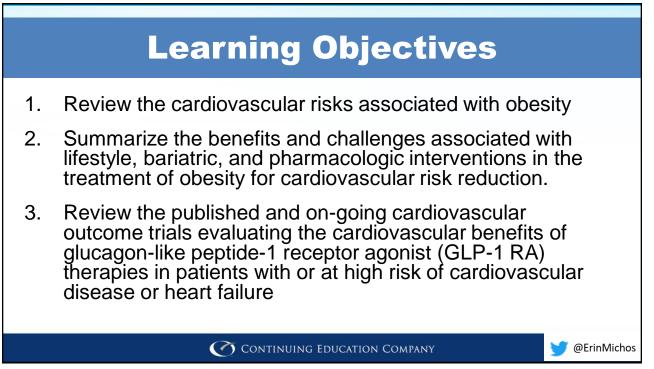
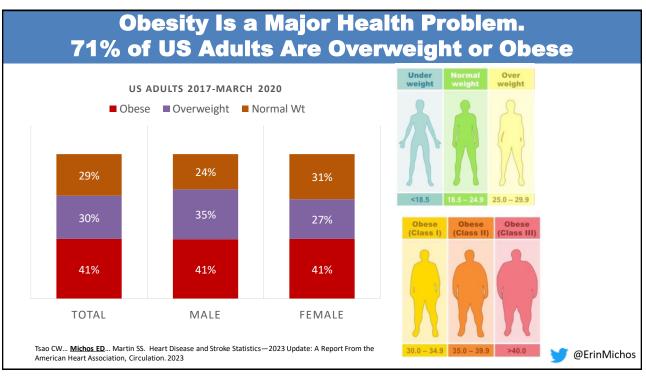
Beyond Weight Loss: Obesity Management for Cardiovascular Disease Prevention

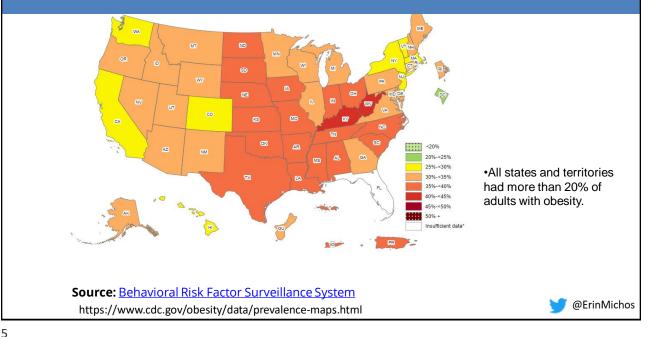
Erin D. Michos, MD, MHS, FACC, FAHA, FASE, FASPC


Professor of Medicine Director of Women Cardiovascular Health Research Associate Director of Preventive Cardiology Division of Cardiology Johns Hopkins University School of Medicine Co-Director, IMPACT Center at JHU (Improving Participation Among diverse populations in Cardiovascular clinical Trials) Co-Editor in Chief, American Journal of Preventive Cardiology Baltimore, MD

CONTINUING EDUCATION COMPANY


Disclosure

Consultant: Amgen; Arrowhead Pharmaceutical; Astra Zeneca; Boehringer Ingelheim; Edwards Lifesciences; Eli Lilly; Esperion; Ionis Pharmaceuticals; Medtronic; Merck; New Amsterdam; Novartis; Novo Nordisk; Pfizer

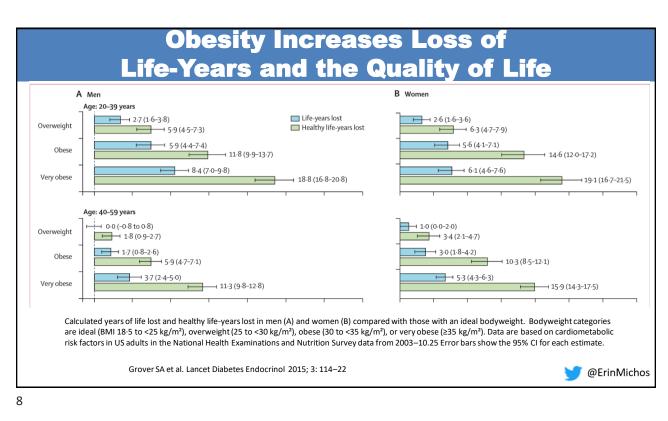

CONTINUING EDUCATION COMPANY

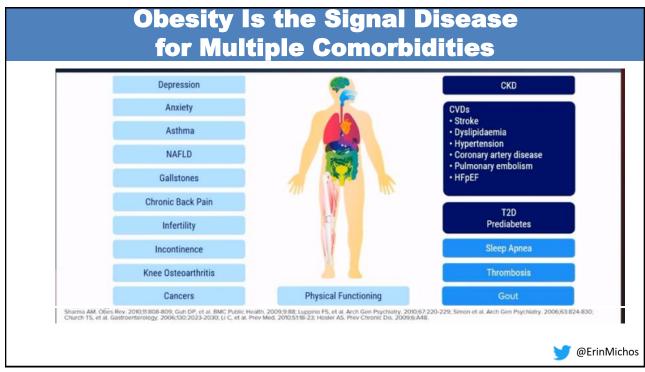
Prevalence of Obesity in US in 2021 by State

More Than Half the Global Population Estimated to Be Overweight/Obese by 2035

Table 1.1: Global overweight and obesity 2020–2035

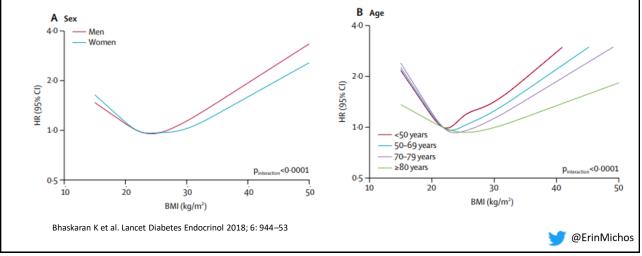
Numbers of people (aged over 5 years) and percentage of the population with overweight or obesity*

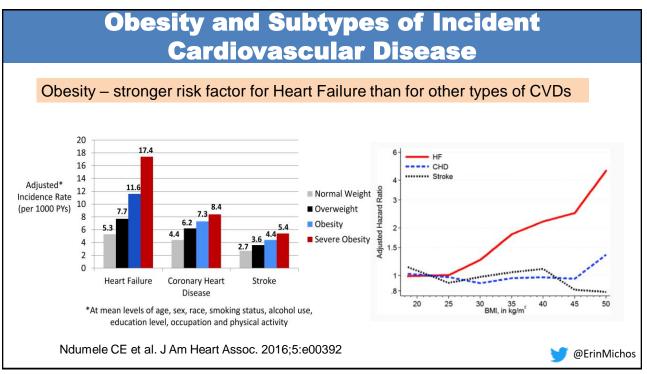

	2020	2025	2030	2035
Number with overweight or obesity (BMI≥25kg/m²) (millions)	2,603	3,041	3,507	4,005
Number with obesity (BMI ≥30kg/m²) (millions)	988	1,249	1,556	1,914
Proportion of the population with overweight or obesity (BMI $\geq 25 \text{kg/m}^2$)	38%	42%	46%	51%
Proportion of the population with obesity (BMI \geq 30kg/m ²)	14%	17%	20%	24%


* For children and adolescents, overweight and obesity are defined using the WHO classification of +1SD and +2SD above median growth reference.

World Obesity Federation. World Obesity Atlas 2023

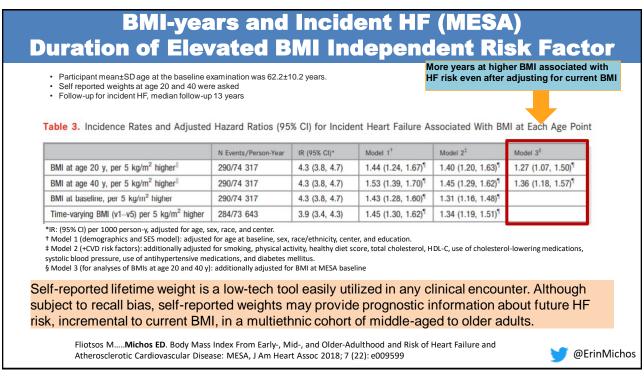
		nda	act	4.3	3 1	'rilli (on.	_
Adults (aged 20 years and ove	er)							
	Men 2020)	Men 2)25	Men	2030	Men	2035
Number with obesity (millions)	347		439 55		553	3 690		
Proportion of all men	14%		16%		19% 2		23%	
	Women 2	020	Wome	n 2025	Wom	en 2030	Wom	en 2035
Number with obesity (millions)	466		568		693		842	
Table 1.3: Global economic	•	2020	-	2025	-	2030	5	2035
Economic impact (US\$ at 2019 val	omic impact (US\$ at 2019 value) (trillions)		96	US\$ 2.4	7	US\$ 3.23		US\$ 4.32
	al GDP	2.4%		2.5%		2.7%		2.9%

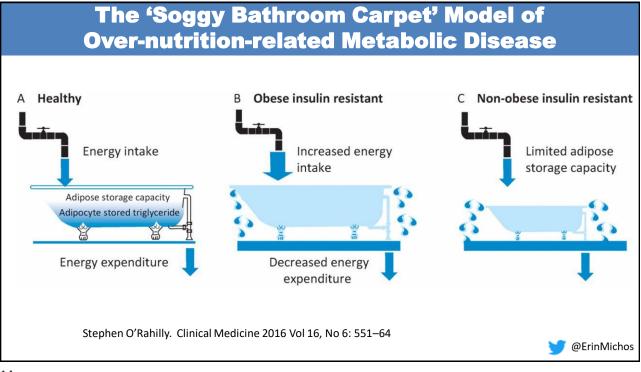


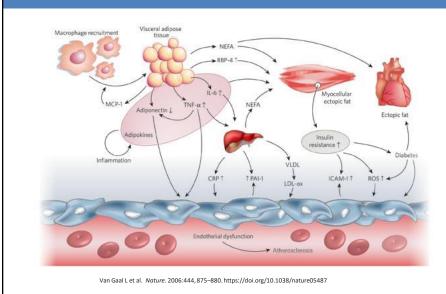


BMI and All Cause Mortality Among Never Smokers [3.6 Million Adults in the UK]

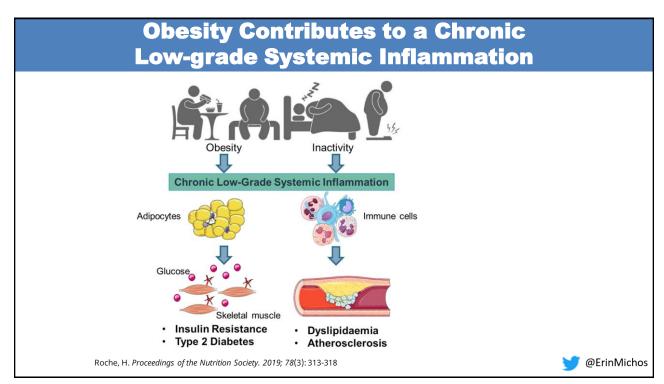
Compared to 20 kg/m2, estimated hazard ratio per 5 kg/m² increase in BMI was 0.81 (95% CI 0.80-0.82) below 25 kg/m² (nadir 21-25 kg/m2) and 1.21 (1.20-1.22) above this point.

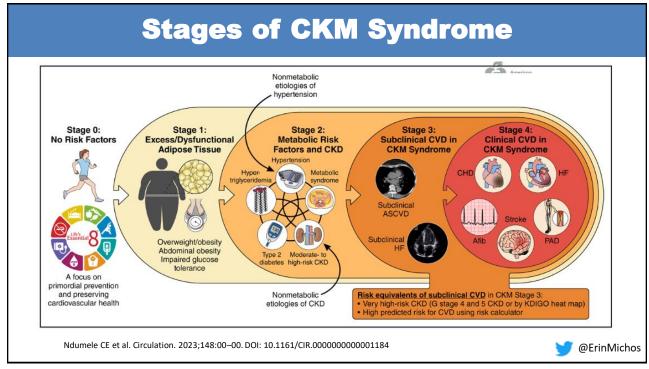





Even "Metabolically Healthy" Obesity Is Associated with Increased Risk of Future CVD Normal Weight Obese Metabolically Healthy Metabolically Healthy BMI ≥30.00 kg/m² BMI 18.50-24.99 kg/m² • No Dyslipidemia • No Dyslipidemia No Hypertension No Hypertension No Type 2 Diabetes No Type 2 Diabetes Calevachetty, R. et al. J Am Coll Cardiol. 2017;70(12):1429-37. @ErinMichos

12



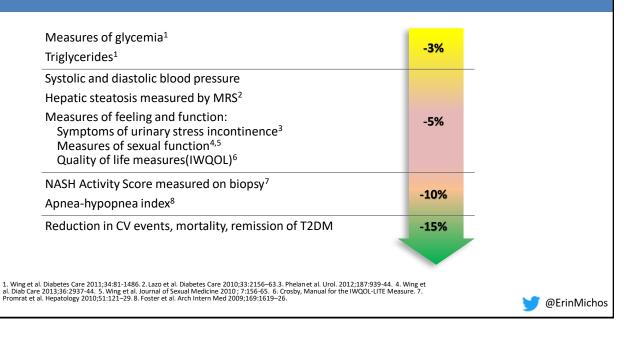

Adipose Tissue as an Active Endocrine and Paracrine Organ

 Adipose tissue is an active endocrine and paracrine organ that releases a large number of cytokines and bioactive mediators, such as leptin, adiponectin, IL-6 and TNF-α, that influence not only body weight homeostasis but also insulin resistance, diabetes, lipid levels, coagulation, fibrinolysis, inflammation and atherosclerosis

Guidelines Recommend Weight Loss as CV Prevention Strategy for Those Overweight/Obese

ACC/AHA Guideline

Recommendations for Adults with Overweight and Obesity

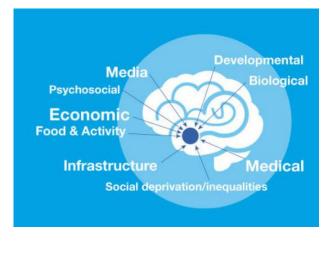

COR	LOE	Recommendations
I	B-R	In individuals with overweight and obesity, weight loss is recommended to improve the ASCVD risk factor profile.

Arnett DK, Blumenthal RS,....Michos ED...et al. Circulation 2019

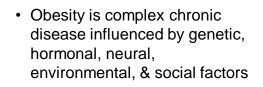
ESC Guideline

Recommendations	Class	Level	
It is recommended that overweight and obese people aim for a reduction in weight to reduce BP, dyslipidaemia, and risk of type 2 DM, and thus improve their CVD risk profile.		A	
While a range of diets are effective for weight loss, it is recommended that a healthy diet in regard to CVD risk is maintained over time.	1	A	
Bariatric surgery for obese high-risk individuals should be considered when lifestyle change does not result in maintained weight loss.	lla	в	
 Visseren FLJ et al. Eur Heart J. 2021;42(34):3227-3337. 	y	@ErinMic	hos

What Is Clinically Meaningful Weight Loss?



¹⁹

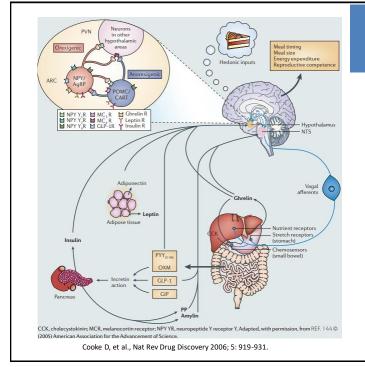

In Look-Ahead, ≥10% Weight Loss Associated with Favorable CV Outcomes

	Weight-change categories (percentage weight loss in first year; n=4834)						
	Gain or stable (<2% loss)	Small loss (≥2-<5%)	Medium loss (≥5–<10%)	Large loss (≥10%)	p value		
Primary outcome							
Events per person-years	289/17075	141/7870	154/8570	128/8942			
Crude rate per 100 person-years	1.69	1.79	1.80	1.43			
Unadjusted hazard ratio (95% CI)	1.00	1·07 (0·88–1·31)	1·07 (0·88–1·31)	0·83 (0·67-1·02)	0.21		
Adjusted hazard ratio†(95% CI)	1.00	1.08 (0.88-1.33)	1·16 (0·95-1·42	0·79 (0·64–0·98), p=0·034*	0.17		
imary outcome: composite of d mission to hospital for angina	eath from CV o	causes, non-fa	atal MI, non-fa	tal stroke, or			
Gregg EW et al. Lancet Diabetes Endocrinol. 2016 N	ovember ; 4(11): 913–92:	1					

Obesity: A Serious but Treatable Chronic Disease

European Association for the Study of Obesity https://easo.org/obesity-is-a-chronic-disease/

70%-80% of our BMI


is determined by genes.*

CHARACTER

21

Neural Basis of Weight Control

Obesity Is a Brainrelated Disorder

- The hypothalamus plays an important role in the regulation of body weight by balancing the intake of food, energy expenditure, and body fat stores
- However its normal function can be disrupted by biological & environmental factors.
- Once disrupted, feelings of hunger and satiety can be affected

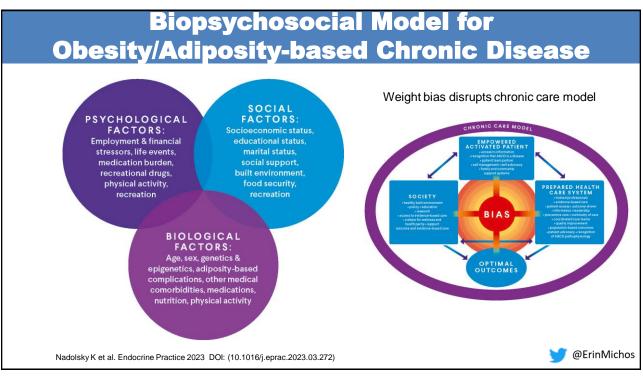
🍠 @ErinMichos

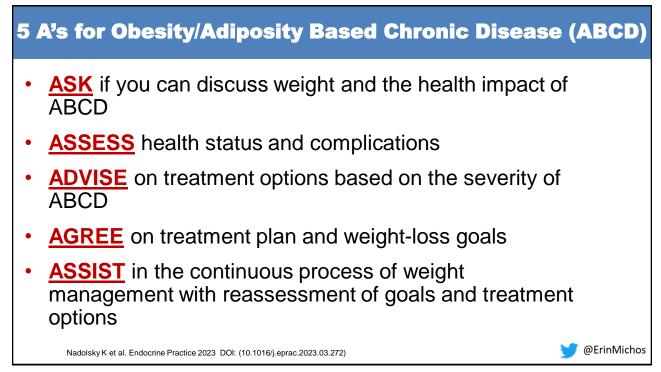
@ErinMichos

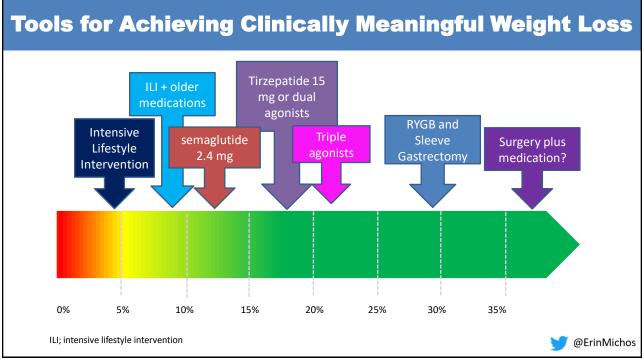
80%

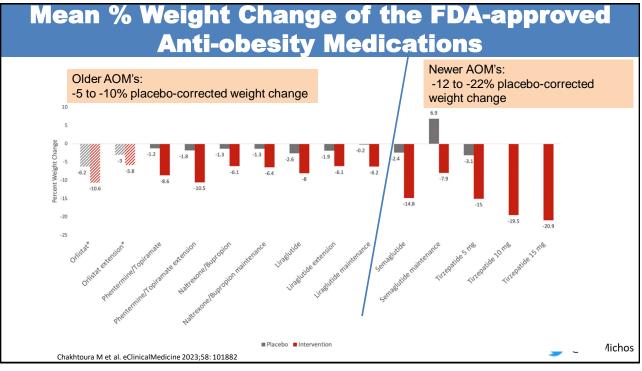
of people who lose 5% of their weight

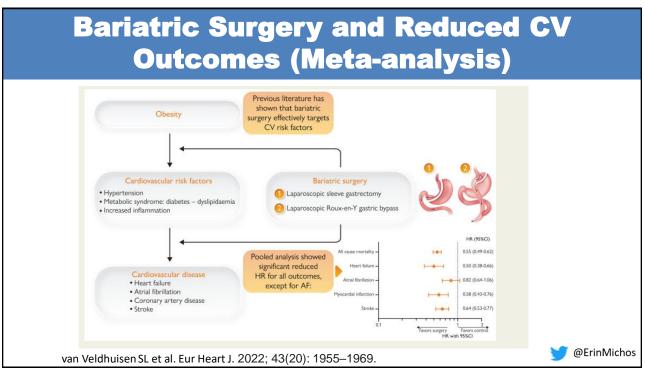
regain it over

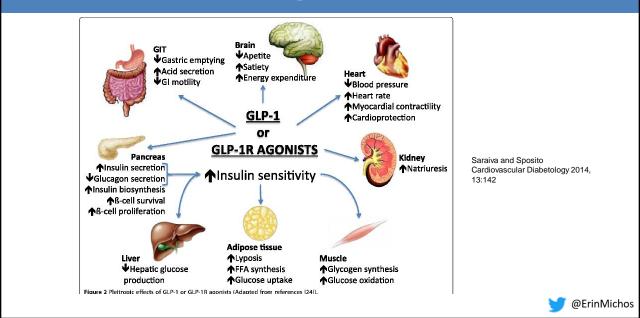

5 years.

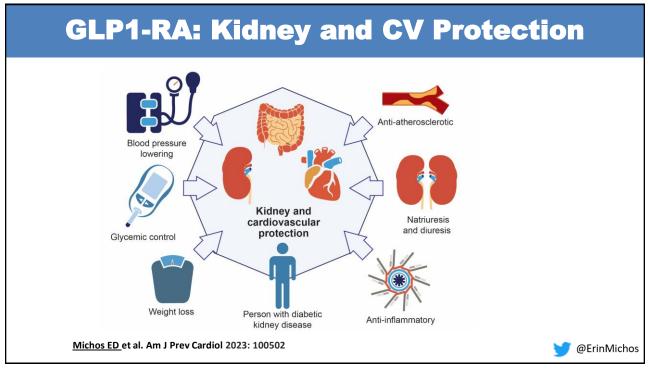

Weight Regain Is Common

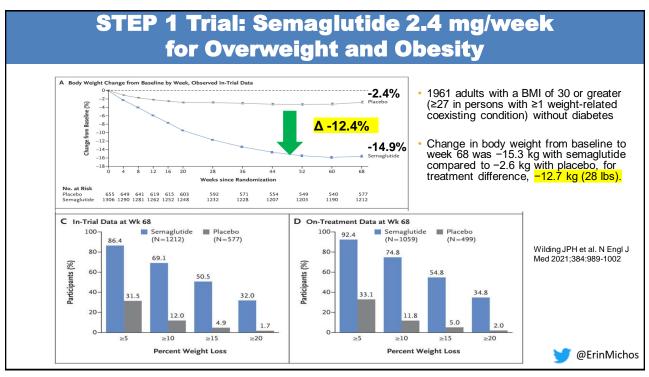

 Data from 14 studies assessing reduced-calorie diets demonstrated that although initial weight loss was achieved (-4.5 kg to -30 kg), most individuals regained a large proportion of their initial weight loss within a few years


European Association for the Study of Obesity https://easo.org/obesity-is-a-chronic-disease/

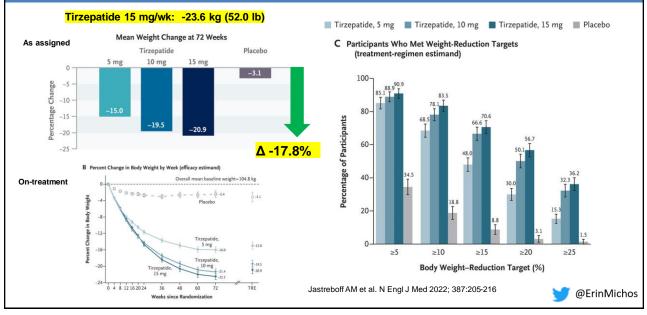




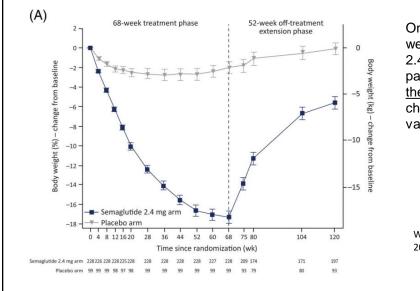




GLP1 Receptor Agonists: Mechanisms



29



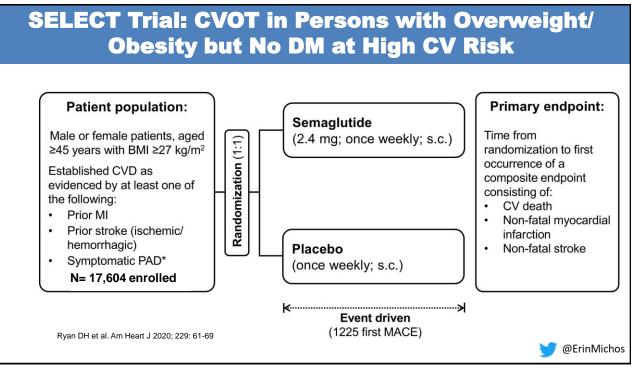
SURMONT-1: Tirzepatide (Dual GLP1/GIP Agonist) in Overweight/Obesity Among Individuals without Diabetes (n=2539, mean BMI 38.0)

Weight Regain After GLP1-RA Cessation (STEP 1 Trial)

One year after withdrawal of onceweekly subcutaneous semaglutide 2.4 mg and lifestyle intervention, participants regained two-thirds of their prior weight loss, with similar changes in cardiometabolic variables

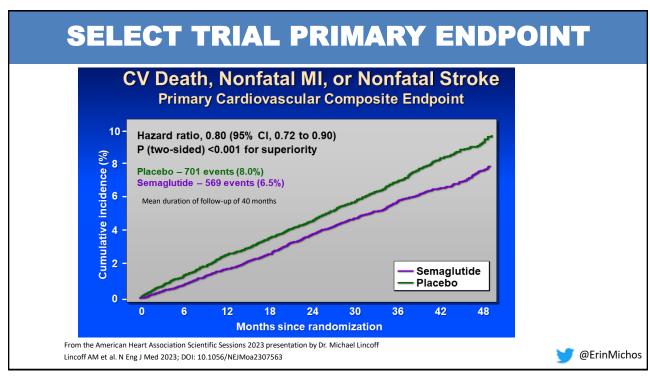
Wilding JPH et al. Diabetes Obes Metab. 2022;24(8):1553-1564

@ErinMichos

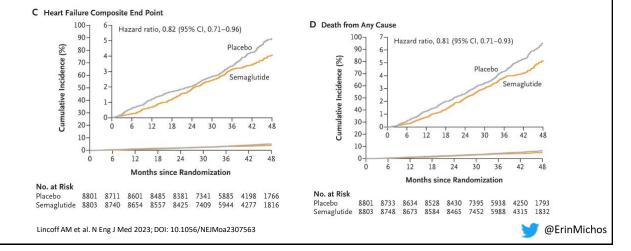

Weight Loss and MACE Reduction by GLP1-RA Agent Weight loss (mean % change in body weight) **GLP-1 RA / Placebo** Data from people with obesity/overweight without T2D **MACE** (% of patients with primary composite **GLP-1 RA / Placebo** outcome of time to first occurrence of MACE) Data from people with T2D Liraglutide Semaglutide Tirzepatide Dulaglutide (s.c. 3 mg)¹⁷ - (s.c. 0.5 and 1.0 mg)⁶ (s.c. 5, 10 and 15 mg)¹⁹ (s.c. 2.4 mg)¹⁸ - (s.c. 0.5 and 1.0 mg)²⁰ (s.c. 1.5 mg)²¹ -15.0% -8.0% / -2.6% -14.9% / -2.4% / -3.1% __ / __ -19.5% -20.9% 13.0% / 14.9% 6.6% / 8.9% __ / __ 12.0% / 13.4% **REWIND (2019)** Sustain 6 (2016) SURPASS CVOT LEADER (2016) HR 0.74 (0.58-0.90) HR 0.88 (0.79-0.90) HR 0.87 (0.78-0.97) (on-going) Michos ED et al. J Am Heart Assoc 2023; 12(11):e029282. @ErinMichos

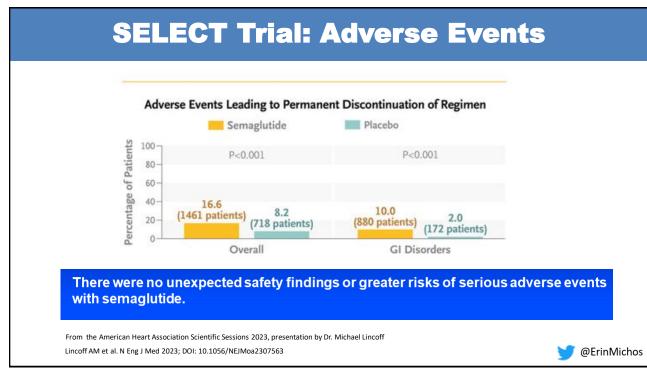
	RA Meta-Ana utcomes In				I-CV	
	Parameter	Hazard Ratio (95% CI)	NNT (95% CI)	p value	Reduction in Event	
<u>Trials</u>	Three-point MACE	<mark>0.86 (0.80–0.93)</mark>	<mark>65 (45–130)</mark>	<mark><0.0001</mark>	<mark>14%</mark>	
ELIXALEADER	Cardiovascular death	<mark>0.87 (0.80–0.94)</mark>	<mark>163 (103–353)</mark>	<mark>0.0010</mark>	<mark>13%</mark>	
 SUSTAIN-6 EXSCEL Harmony Outcomes REWIND PIONEER 6 AMPLITUDE-O 	Fatal or non-fatal myocardial infarction	<mark>0.90 (0.83–0.98)</mark>	<mark>175 (103–878)</mark>	<mark>0.02 0</mark>	<mark>10%</mark>	
	Fatal or non-fatal stroke	<mark>0.83 (0.76–0.92)</mark>	<mark>198 (140–421)</mark>	<mark>0.0002</mark>	<mark>17%</mark>	
	Hospital admission for heart failure	<mark>0.89 (0.82 to 0.98)</mark>	<mark>258 (158 to 1422)</mark>	<mark>0.013</mark>	<mark>11%</mark>	
	Composite kidney outcome including macroalbuminuria	0.79 (0.73 to 0.87)	47 (37 to 77)	<0.0001	21%	
	Worsening of kidney function	0.86 (0.72 to 1.02)	241 (120 to -1694)†	0.089	14%	
	Sattar N, et al. Lancet Diabetes Endocrinol .2021;9(10):653-662.					

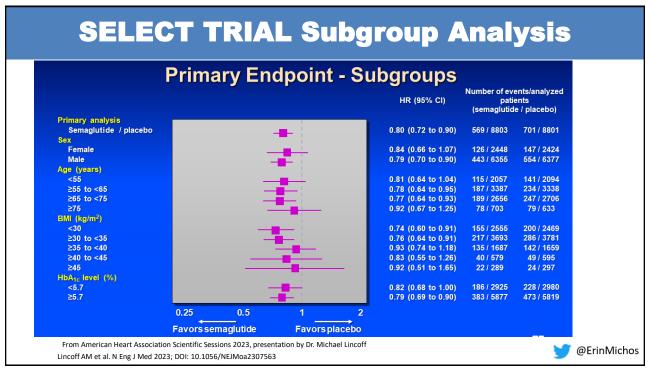
Leading up to the SELECT Trial, Earlier Data Had Suggested Lower CV Events with GLP1-RA in Overweight/Obesity without Diabetes


Effect of glucagon-like peptide-1 receptor agonists on cardiovascular events in overweight or obese adults without diabetes: A meta-analysis of placebo-controlled randomized trials

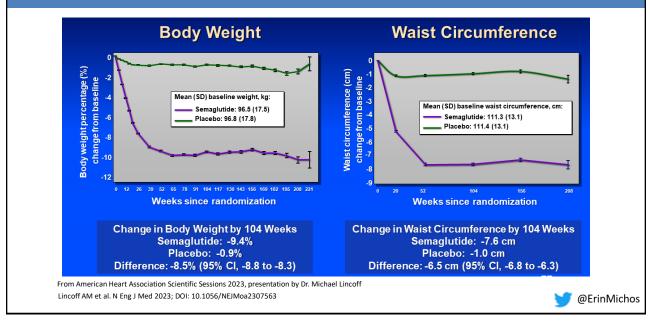
	GLP-	-1 RA	Plac	ebo		Risk ratio	Weight	
Study	CV event	No event	CV event	No event		with 95% CI	(%)	
STEP 8 2022	34	219	9	76		1.27 [0.64, 2.54]	3.72	
STEP 1 2021	107	1,199	75	580	-	0.72 [0.54, 0.95]	18.84	
STEP 3 2021	40	367	22	182		0.91 [0.56, 1.49]	7.07	
STEP 4 2021	26	509	30	238		0.43 [0.26, 0.72]	6.76	
O'Neil, et al. 2018	4	817	1	135		- 0.66 [0.07, 5.88]	0.39	
SCALE Obesity and Prediabetes 2017	242	1,259	142	605		0.85 [0.70, 1.02]	33.48	
SCALE Sleep Apnea 2015	3	173	3	176		- 1.02 [0.21, 4.97]	0.73	
SCALE Obesity and Prediabetes 2015	217	2,264	123	1,119		0.88 [0.72, 1.09]	28.78	
SCALE Maintenance 2013	0	212	11	199		0.04 [0.00, 0.73]	0.23	
Overall					♦¦	0.81 [0.70, 0.92]		
Heterogeneity: τ^2 = 0.01, I^2 = 12.07%, H^2	= 1.14				1			
Test of $\theta_i = \theta_j$: Q(8) = 13.60, p = 0.09					1			
Test of θ = 0: z = -3.12, p = 0.00					Favors GLP-1 RA Favo	rs Placebo		RR 0.81
				2	1/256 1/64 1/16 1/4 1 4	4		(0.70-0.92)
Random-effects REML model								(0.70-0.52)
Leite AR et al. Diabetes Obe	sity Metat	oolism 20)22: 24 (8	3) :1676-	-1680, DOI: (10.1111/do	m.14707)		🔰 @ErinMicho


SELECT Trial Baseline Characteristics

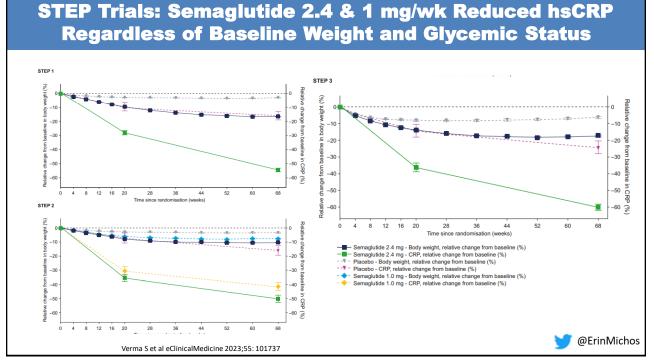

(Percent of patients unless otherwise noted)	Semaglutide (N = 8803)	Placebo (N = 8801)
Age (yrs) – mean ± SD	61.6 ± 8.9	61.6 ± 8.8
Female sex	27.8	27.5
Body Mass Index (BMI, kg/m²) – mean ± SD	33.3 ± 5.0	33.4 ± 5.0
BMI ≥ 30 kg/m²	71.0	71.9
HbA _{1c} (%) – mean ± SD	5.78 ± 0.34	5.78 ± 0.33
HbA _{1c} 5.7-6.4%	66.8	66.1
Prior MI	76.4	76.2
Prior heart failure	24.5	24.2
Systolic BP (mm Hg) – mean ± SD	131.0 ± 15.6	130.9 ± 15.3
Statin therapy	87.7	87.6
LDL Cholesterol (mg/dL) – median (IQR)	78 (61 -102)	78 (61 -102)
Triglycerides (mg/dL) – median (IQR)	134 (99 - 188)	135 (100 - 190)

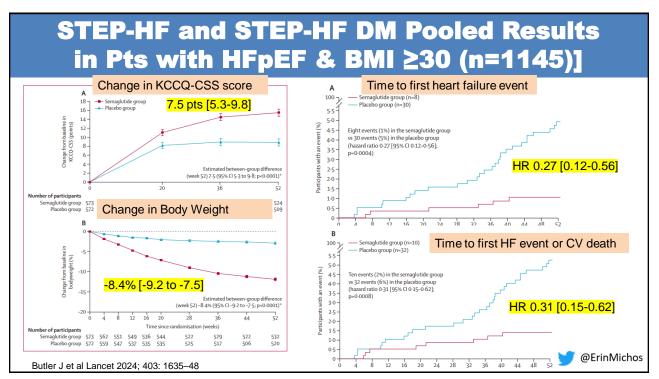


<u>SELECT TRIAL</u>: Semaglutide and Cardiovascular Outcomes in Persons with Overweight/Obesity but without Diabetes


Because the between-group difference in death from cardiovascular causes did not meet the required P value for hierarchical testing, results for the two subsequent end points (below) in the testing hierarchy are reported as point estimates and 95% confidence intervals.

SELECT Trial Metabolic Outcomes


43


SELECT Trial: Metabolic Secondary Endpoints

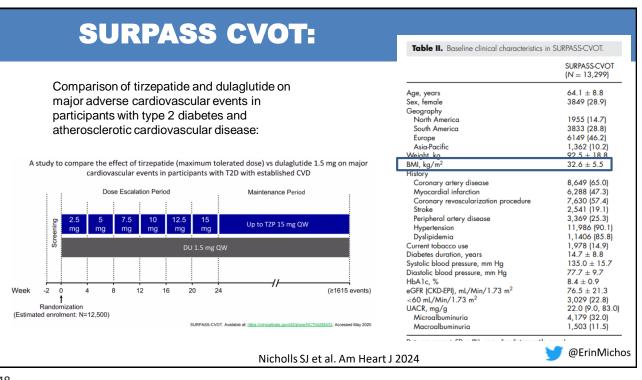
Time to first event	Semaglutide N = 8803	Placebo N = 8801	HR (95% CI)
HbA _{1c} ≥6.5% – % pts	3.5	12.0	0.27 (0.24 to 0.31)
$HbA_{1c} \ge 5.7\%$ (pts with baseline <5.7%) $-$ % pts	21.3	50.4	0.33 (0.30 to 0.36)
Change from randomization to week 104			Difference (95% CI)
Systolic BP – mm Hg	-3.8 (0.2)	-0.5 (0.2)	-3.3 (-3.8 to -2.9)
HbA _{1c} – percentage point	-0.3 (0.0)	0.0 (0.0)	–0.3 (–0.3 to –0.3)
hs C-reactive protein – relative change (%)	-39.1	-2.1	–37.8 (–39.7 to –35.9)
LDL-cholesterol – relative change (%)	-5.3	-3.1	-2.2 (-3.2 to -1.1)
Triglycerides – relative change (%)	-18.3	-3.2	–15.6 (–16.7 to –14.6)

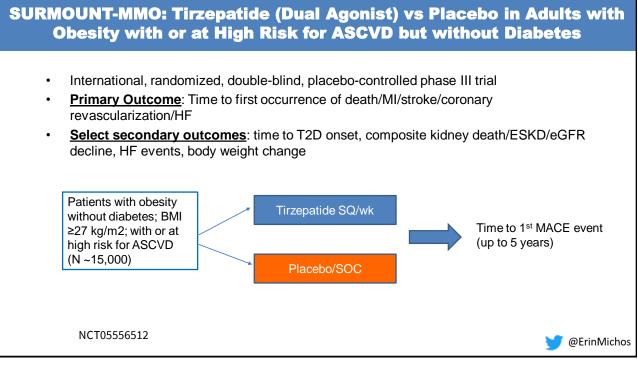
From American Heart Association Scientific Sessions 2023, presentation by Dr. Michael Lincoff Lincoff AM et al. N Eng J Med 2023; DOI: 10.1056/NEJMoa2307563

🍯 @ErinMichos

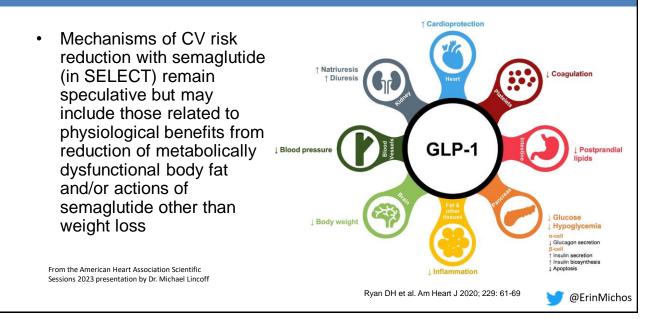
46

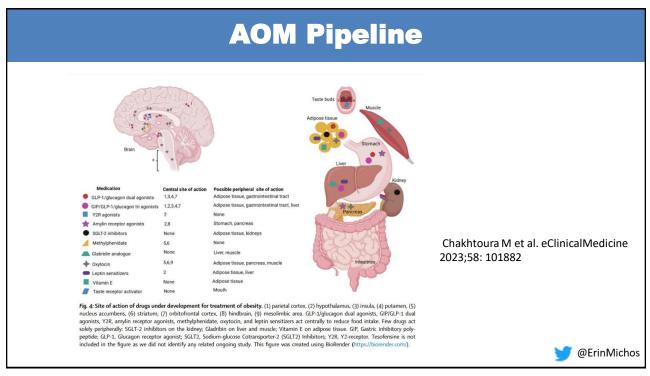
Erin Michos, MD Obesity Management for CVD Prevention

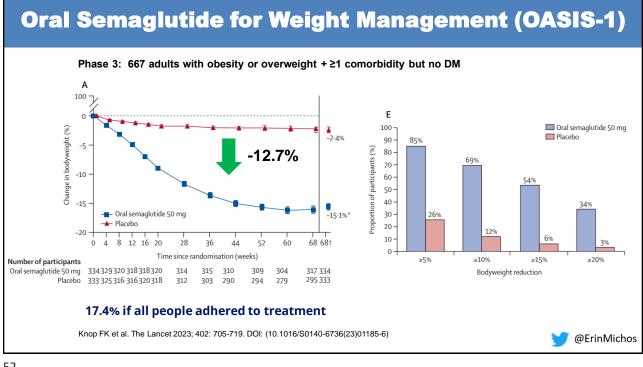


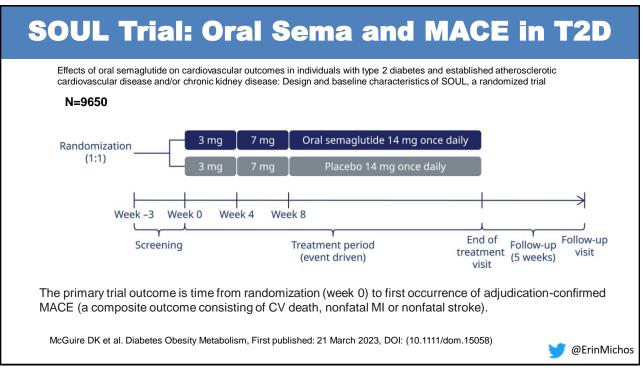

Semaglutide indicated in combination with a reduced calorie diet and physical activity:

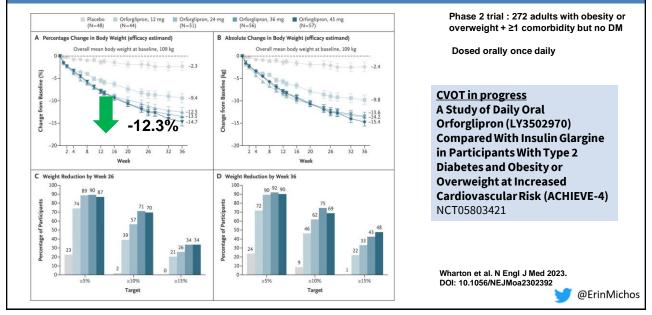
- To reduce the risk of major adverse cardiovascular events (cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke) in adults with established cardiovascular disease and either obesity or overweight.
- To reduce excess body weight and maintain weight reduction long term in:
 - Adults and pediatric patients aged 12 years and older with obesity
 - Adults with overweight in the presence of at least one weightrelated comorbid condition

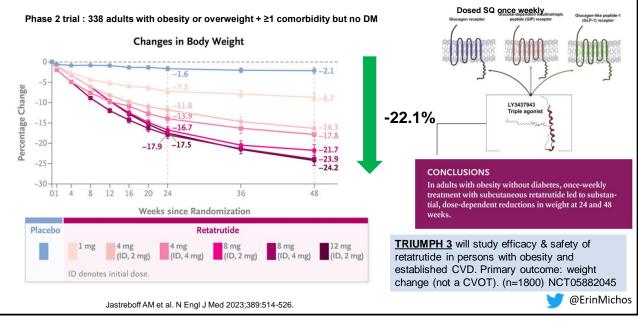

🍯 @ErinMichos

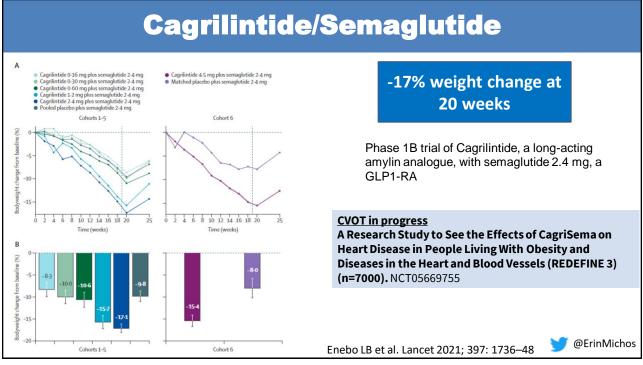


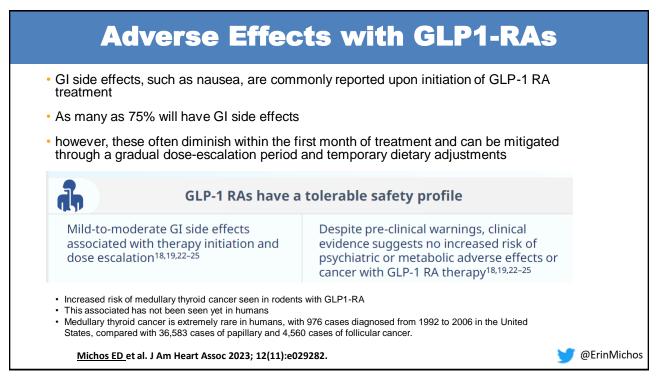



GLP1-RA Mechanisms for Cardioprotection

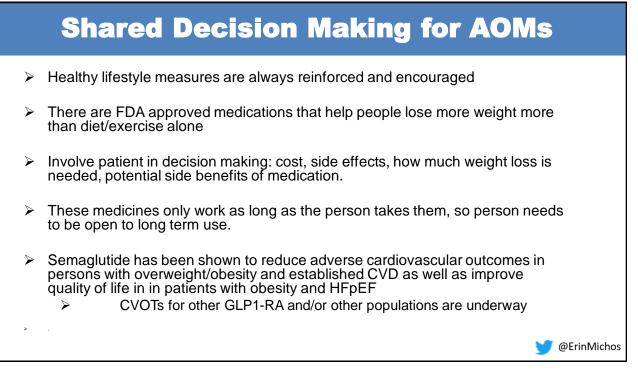





Orforglipron: an Oral Nonpeptide GLP-1 RA



Retatrutide: A Triple Agonist (Glucagon, GIP, GLP1)



55

@ErinMichos

Conclusions

- Obesity is associated with an increased risk of CVD and CV-associated mortality.
- Obesity is a chronic, serious life threatening disease, but treatments exist
- GLP-1 RAs should be considered by cardiologists and other HCPs
 - as a treatment option for obesity (chronic weight management)
 - to reduce CVD risk in patients with T2D
 - to reduce CVD events in persons with overweight of obesity and established CVD
- Improving the recognition and understanding of GLP-1 RA therapy among HCPs may remotivate them in supporting patients in losing weight
- Mild-to-moderate GI side effects associated with therapy initiation and dose escalation.
- Prior-auths, insurance plan exclusions, and financial barriers remain a challenge in clinical practice for implementation of GLP1-RA therapy

Michos ED et al. J Am Heart Assoc 2023; 12(11):e029282.

59

All of the following are TRUE statements about <u>EXCEPT</u>:

- A. GLP-1RA improves heart failure symptoms in patients with HFpEF
- B. Weight regain is common after cessation of GLP1-RA therapy
- C. In absence of diabetes, the MACE reduction with semaglutide was only seen in persons with BMI >30
- D. Majority of patients on GLP1-RA therapy experience some GI side effects

CONTINUING EDUCATION COMPANY