

Jan N. Basile, MD, FACP, FASH, FAHA

Professor of Medicine Division of Cardiology Medical University of South Carolina Ralph H Johnson VA Medical Center Previous Vice-Chair of Clinical Programs AHA Council of Hypertension US National Leader SURPASS-CVOT Charleston, SC basilejn@musc.edu

CONTINUING EDUCATION COMPANY

Disclosure

Consultant: Eli Lilly (SURPASS-CVOT); Idorsia – Hypertension; Medtronic; Novo Nordisk; ReCor (Renal Denervation); UpToDate (Hypertension Section)

Research Grant: Ablative Solutions; Eli Lilly (TRIUMPH); ReCor (Radiance I and II)

CONTINUING EDUCATION COMPANY

Case 1

- 54-year-old AA male new to your practice
- BP recently measured at 162/94 mm Hg in the local Emergency Room where he presented for sinus problems.
- Subsequent measurements at home by a friend with hypertension were "high" over the last week, both in the am and pm.
- Office BP today is 158/96 mmHg, an average of 3 measurements taken properly (seated, back supported, etc.)
- Examination remarkable only for AV nicking, a sustained apical impulse and an S4, without a murmur, normal pulses.
- BMP normal, eGFR 76 cc/min, urine negative for protein, A1C 5.1%
- EKG remarkable for LVH.

CONTINUING EDUCATION COMPANY

3

<section-header><list-item><list-item><list-item><list-item><list-item>

Case 1 - Question 1 **The Most Likely Diagnosis in This Patient Is:**

- A. Essential Hypertension
- B. Apparent Resistant Hypertension
- C. Resistant Hypertension
- D. Secondary Hypertension
- E. None of the above

CONTINUING EDUCATION COMPANY

THE VAST MAJORITY OF HYPERTENSION SEEN IN CLINICAL PRACTICE IS PRIMARY OR ESSENTIAL HYPERTENSION

- Pathogenesis of hypertension is complex:
 - Poly-genetic (multiple-genes) and environmental factors interact to cause hypertension.
 - Obesity, insulin resistance, diabetes, aging, sedentary lifestyle, family hx, and social determinants of health all contribute.
 - Pathophysiologically, activation of the R-A-A system, SNS, and Salt + Water Retention (Volume excess) elevates BP.
 Mono-genetic (Single gene) hypertensive disorders can occur (ie Liddle's Syndrome), but these are extremely rare.

JNC VI. Arch Intern Med. 1997; 157: 2413-2446

Case 1 - Question 3 In Addition to Lifestyle Modification, and Properly Teaching Him How to Take His BP at Home, with His BP of 158/96 mm Hg, Which of the Following Would You Now Do for This Patient?

- A. I would not add antihypertensive Rx at this time.
- B. I would start Lisinopril 20 mg qam.
- C. I would start Amlodipine 5 mg qam.
- D. I would start Hctz 25 mg qam.
- E. I would start Benazepril 20 mg/amlodipine 5 mg qam.

CONTINUING EDUCATION COMPANY

2/3 of Adults Will Require Combination Antihypertensive Therapy to Attain BP Control

JNC 7: "More than two-thirds of hypertensive individuals cannot be controlled on one drug and will require two or more antihypertensive agents from different drug classes."¹⁻⁵

Chobanian AV, et al. JNC 7. Hypertension. 2003;42:1206-1252

- 1. Cushman WC, et al (ALLHAT). J Clin Hypertension. 2002;4:393–404.
- 2. Hansson L, et al (HOT). Lancet. 1998;351:1755-1762.
- 3. Black HR, et al (CONVINCE). JAMA. 2003;289: 2073-2082.
- 4. Dahlof B, et al (LIFE). Lancet. 2002;359:995-1003.
- 5. Materson BJ, et al (VA). NEJM. 1993;328:914-921.

17

Key Point: Previous Evidence-Based Monotherapy Did Not Improve HTN Control Rates

Differences in Hypertension Medication Prescribing for Black
Americans vs Non-Black Americans on BP Control

Retrospective 2-yr EMR observation of 10,875 patients with HTN age 18-85 on 1- or 2 BP drugs

Medication	Non-Black/AA	Black/AA
Monotherapy		
Thiazide	27.7%	41.3%
Calcium Chanel Blocker	30.1%	40.1%
ACE-I/ARB	42.3%	18.6%
2-Drug Regimen		
Thiazide and CCB	<mark>19.8%</mark>	<mark>1</mark> <mark>35.8%</mark>
Thiazide and ACE-I/ARB	49.4%	44.3%
CCB and ACE-I/ARB	30.8%	19.8%

23

EDITORIAL

Race and Antihypertensive Drug Therapy: Edging Closer to a New Paradigm

"The time has come to shift the focus from race-specific monotherapy treatment recommendations by adopting comprehensive team-based multi-level care models that use race-informed communication, self-care, and dietary strategies coupled with race-agnostic treatment algorithms that minimize therapeutic inertia and promote prescription of an adequate intensity of drug therapy. Recommending optimization of pervasively used monotherapy for Black hypertensives, a thus far unsuccessful strategy, offers no opportunity for improving hypertension control for all patients while eliminating racial disparities in the same. The evidence documenting racial disparities in drug responses is neither synonymous with the best practices nor is it a necessary component of exemplary hypertension control programs."

Flack, JM and Buhnerkempe, M.G. Hypertension 2022;79:349-351. Published Feb 2022

Race-based Antihypertensive Management

•Race is a social and not a biologic construct.

•Yet, racial disparities are critical to address when designing strategies to improve BP control.

•The longstanding use of Black race to select antihypertensive drug therapy and in atherosclerotic risk calculation has not addressed racial disparities in BP control.

•Race-agnostic drug therapy coupled with greater emphasis on diet/lifestyle modification in Black patients should be the cornerstone of a race-informed approach to hypertension therapeutics.

Flack JM, et al. Am J Hypertens. July 2024 10.1093/ajh/hpae093.

25

Hypertension

ORIGINAL ARTICLE

Improved Persistence to Medication, Decreased Cardiovascular Events and Reduced All-Cause Mortality in Hypertensive Patients With Use of Single-Pill Combinations: Results From the START-Study

Roland E. Schmieder[®], Sven Wassmann, Hans-Georg Predel, Burkhard Weisser, Jörg Blettenberg[®], Anton Gillessen, Olaf Randerath[®], Antje Mevius[®], Thomas Wilke, Michael Böhm[®]

(Hypertension. 2023;80:1127-1135. DOI: 10.1161/HYPERTENSIONAHA.122.20810.)

Methodology of START-Study

- Retrospective Observational Claims Data Analysis.
- Hypertensive Adults 18 years and older.
- All patients treated with renin-angiotensin system combinations given as single pill or identical multi-pills covering the years 2012 to 2018.
- Patients were not allowed to have any of the fixed-dose combinations evaluated the last year prior to the inclusion in the data set analysis.
- Followed up to at least 1 year.
- 1:1 propensity score matching used.
- Persistence to medication, CV events, and all-cause mortality were compared using non-parametric tests.
- Results were reported as incidence rate ratios and hazard ratios.
- Adherence with the single-pill fixed-dose combination antihypertensive agents was improved 20-50% over the same medications given as multiple single-pill antihypertensive agents.

27

28

Jan Basile, MD Challenging Cases in Complex Hypertension

Improved Adherence with SPC's

Study*	Design	SPC, N	FEC, N	[†] PDC SPC vs. FEC, <i>p</i> -value
Ah, et al	RetroDB	20,175	20,175	80% vs. 70%, p < 0.01
Breitscheidel, et al	RertroDB	45,511	26,172	78.1% vs. 71.5%, p < 0.0001
Degli Esposti, et al	RetroCoh	302	791	79.8% vs. 70.9%, p < 0.01
Dickson, et al	RetroCoh	2336	3368	63.4% vs. 49%, p < 0.0001
Hess, et al	RetroCoh	7225	7224	76.9% vs. 54.4%, p < 0.001
Ho, et al	RetroDB	13,176	4392	58% vs 47%, p < 0.001
Hsu, et al	RetroDB	5725	1623	42.1% vs 32.4%, p < 0.001
Jin-Young, et al	RetroOB	757	707	MPR ≥ 80%: 91.9% vs. 88.9%, NS
Koval, et al	RandPG	39	36	87% vs. 61%, <i>p</i> < 0.05
Machniki, <i>et al</i>	RetroDB	1884	1884	70.0% vs. 60.6%, <i>p</i> < 0.0001
Marazzi, et al	RanPro	154	152	94% vs. 85%, p = 0.034
Schweizer, et al	NRPro	197	138	100% vs. 92%, p=NS
Tung, et al	RetroDB	1136	4544	PDC \geq 80%: 65.0% vs. 56.9%, $p < 0.001$
Yang, et al	RetroDB	382,476	197,375	72.8% vs. 61.3% (11.6% [11.4-11.7])

* Adapted from Parati. et al. Hypertension 2021;77(2):692-705

Twhen only medication possess ratio (MPR) provided, MPR multiplied \times 100 and expressed as percent to approximate pro-portion of days covered (PDC). SPC: single-pill combinations; FEC: free equivalent combinations; RetroDB: retrospective database design; RetroCor: retro-spective cohort; RetroOb: retrospective observational; RanPro: randomised, prospective; NRPro: non-randomised prospective; P = NS: not significant or not provided.

Table 1. Egan, B.M. Et al. Blood Pressure, 31:1, pg 164-168. 2022

TRIO Ultrasound Renal Denervation-ON 3 MEDS at Screening: Their BP at Screening in the Office Qualified for the Study

1 Month Later Having Been on a Triple Single-Pill Combination Agent Only 43% Now Qualified for the Study by 24-hr ABPM

Single-Pill Triple Combinations now Improved adherence and patients no longer qualified for the Study

First and Only Key Clinical Antihypertensive Trial in Patients with Hypertension to Establish Best Initial Fixed-Dose Single Combination Therapy

 ACCOMPLISH (Avoiding Cardiovascular Events through COMbination Therapy in Patients Living with Systolic Hypertension) (2008)

Jamerson K. et al. N Engl J Med Volume 359(23):2417-2428 December 4, 2008

	ACCOMPLISH Trial	
	The NEW ENGLAND JOURNAL of MEDICINE	
	ESTABLISHED IN 1812 DECEMBER 4, 2008 VOL. 359 NO. 23 Benazepril plus Amlodipine or Hydrochlorothiazide for Hypertension in High-Risk Patients	
Compare	d Benazapril-Amlodipine with Benazapril-HCTZ in 11.506 high-risk pa	atients
 Baseline E target org 	BP 145/80 mm Hg with underlying predominantly cardiac disease or o gan involvement	other
 Combined angina, re 	d CV endpoint (CV death, nonfatal MI, nonfatal stroke, hospitalizatio esuscitation from sudden cardiac death, coronary revascularization)	on from
• At 3 year	rs, Composite endpoint lower in Benazapril- Amlodipine arm	
Jamerson K. et al. N	I Engl J Med Volume 359(23):2417-2428 December 4, 2008	

SUMMARY of CASE 1:

- 1. The vast majority of patients with hypertension have essential or primary hypertension.
- 2. Patients with elevated BP's in our office are often non-adherent to both lifestyle and pharmacologic therapy.
- 3. Self-identified African-American patients with hypertension are at an increased risk of CV mortality and overall mortality which does not seem to be related to their unawareness or their receiving treatment for their hypertension. They are, however, less likely to have their BP controlled.
- 4. In an effort to overcome clinical inertia and to reduce mortality and hospitalizations in those with hypertension, initially starting single pill fixed-dose combination agents to improve adherence, BP control, and outcome can be recommended for all patients
- 5. The ideal combination agent may not be with hctz, but with amlodipine and a RAS-blocking combination according to the ACCOMPLISH trial, regardless of race.
- 6. The next best cost-conscious fixed dose combination to be added may be spiro/hctz.

41

Case 2

- 78-year-old WF with no significant medical history for ASCVD, CKD, or Diabetes presents for evaluation on no medications.
- She has had hypertension for over 40 years and was on 1 antihypertensive agent, a "fluid pill", for many years.
- She has been off her medication for 2 years and wants to know if she should restart her medication.
- No history of out-of-office BP measurement, her average office BP measurement today (3 measurements) was 142/92 mm Hg.
- P exam-unremarkable, eyegrounds showed slight arteriolar narrowing.
- Labs-sodium 138, potassium 4.2, glucose 86, creatinine 0.78 (eGFR 70), Total chol-160, HDL-C 50, Trig-100, LDL-C-90, EKG-NSR, o/w nl.

CONTINUING EDUCATION COMPANY

Out-of-Office Blood (Self) Pressure Measurement Provides a better risk prediction

- Provides a better risk prediction than office-based monitoring
- Correlates better with the cardiac (LVH) and renal (albuminuria) consequences of hypertension than office readings
- Use and Advantages:
 - Helps identify WCH and masked hypertension
 - Readings in the am and before bed may reveal patterns in blood pressure and periods when control is inadequate (Masked UnControlled Hypertension)
 - Improves patient adherence
 - Reduces costs

Pickering TG, White W. J Clin Hypertens. 2008;10:850–855; Izzo JL, Sica DA, Black HR, eds, and the Council for High Blood Pressure Research (American Heart Association). Hypertension Primer: The Essentials of High Blood Pressure. 4th ed. Philadelphia; 2008:339–342.

	New Centers for Medicare and Medicaid Services (CMS) Incentives for using SMBP (Self or Home Measured BP): Coverage & Reimbursement	
20	020 CPT codes for Self or Home Measured BP	
	Medicare has coverage for Self or Home Measured BP in their 2020 fee schedule	
	 99473: <u>Education/Training</u> SMBP using a device validated for clinical accuracy; patient education/training and device calibration Can be submitted once Staff time = \$11.19 for patient education 	
Patients choose 1 week per month, twice in the am when first waking up and twice before getting into bed. 28 measurements throw out 1 st day	 99474: Monthly Patient Use SMBP using a device validated for clinical accuracy; separate self-measurements of two readings, one minute apart, twice daily over a 30-day period (minimum of 12 readings), collection of data reported by the patient and/or caregiver to the physician or other gualified health care professional, with report of average systolic and diastolic pressures and subsequent communication of a treatment plan to the patient - Can be submitted monthly Provider = \$15.16 monthly for data entered/treatment plan communicated to patient. Will increase the use of telehealth in BP control. 	

Treatment Starts with Non-Pharmacologic (Lifestyle) Management Each with a 1A LOE

	Goal	Nonpharmacological Interventions	Dose	Systolic BP Impact in Hypertension	Systolic BP Impact in Normotension
	Weight loss	Weight/ body fat	 Best goal is ideal body weight Expect about 1 mm Hg for every 1 kg reduction in body weight 	-5 mm Hg	-2/3 mm Hg
	Healthy diet	DASH dietary pattern	 Consume a diet rich in fruits, vegetables, whole grains and low-fat dairy products with reduced content of saturated and total fat 	-11 mm Hg	-3 mm Hg
ł	Reduced intake of dietary sodium	Dietary sodium	 Optimal goal is <1500 mg/day, most Americans 3400 mg/day Aim for at least a 1000 mg/day reduction in most adults 	-5/6 mm Hg	-2/3 mm Hg
	Enhanced intake of dietary potassium	Dietary potassium	 Aim for 3500-5000 mg/day, preferably by consumption of a diet rich in potassium 	-4/5 mm Hg	-2 mm Hg
	Physical activity	Aerobic	90-150 min/week65%-75% heart rate reserve	-5/8 mm Hg	-2/4 mm Hg
	Physical activity	Dynamic resistance	 90-150 min/week; 50%-80% 1 rep maximum 6 exercises, 3 sets/exercise, 10 repetitions/set 	-4 mm Hg	-2 mm Hg
	Physical activity	lsometric resistance	 4 x 2 min (hand grip), 1 min rest between exercises, 30%-40% maximum voluntary contraction, 3 sessions/week; 8-10 weeks 	-5 mm Hg	-4 mm Hg
	Moderation of alcohol intake	Alcohol consumption	 ≤1 drink daily for women ≤2 drinks daily for men Drink= 5 oz of wine, 12 oz of beer 1 oz 100 proof or 1.5 oz of 70 proof 	-4 mm Hg	-3 mm Hg
A	dapted from Whelton Pl	K et al. J Am Coll Cardiol. 2	018;71:e127-e248.	LOE-Level Of Evidence	e

Case 2 (Cont.)

- She returns in 1 month with her home BPs stating that she feels well and has gone on a label-reading diet trying to avoid processed and high-salt foods while increasing high potassium foods (fruits and vegetables).
- Her BPs at home have been 138-142/84-88 mm Hg)
- She asks you what she should do for her BP?

CONTINUING EDUCATION COMPANY

58

Am Fam Physician. 2022;106(6):721-722

TABLE 4

Comparison of Recommended Blood Pressure Targets in Recent Guidelines

Guideline	18 to 59 years of age (mm Hg)	60 to 69 years of age (mm Hg)	70 to 79 years of age (mm Hg)	Older than 80 years (mm Hg)
2022 American Academy of Family Physicians*	< 140/90	< 140/90	< 140/90	< 140/90
2022 National Institute for Health and Care Excellence ¹³	< 140/90	< 140/90	< 140/90	< 150/90
2021 European Society of Hypertension Council ¹⁴	< 130/80†	< 130/80†	< 140/80	< 140/80
2020 International Society of Hypertension‡44	< 130/80	< 140/90§	< 140/90	< 140/90
2020 U.S. Department of Veterans Affairs/U.S. Department of Defense 15	< 130/90¶	< 150/90	< 150/90	< 150/90
2017 American College of Cardiology/American Heart Association* ¹⁶	< 130/80	< 130/80	< 130/80	< 130/80
2017 American College of Physicians and American Academy of Family Physicians ¹¹	-	< 150/90	< 150/90	< 150/90
2014 Eighth Joint National Committee ¹⁰	< 140/90	< 150/90	< 150/90	< 150/90

-Lower targets are reasonable based on clinical judgment and patient preferences or values.
 +A target of less than 140/90 mm Hg is recommended for patients with chronic kidney disease.
 -Recommendation is to treat all patients to less than 140/90 mm Hg but states it is optimal to treat persons younger than 65 years and people with coronary artery disease, chronic kidney disease, chronic kidney disease, chronic bis than 140/80 mm Hg in older patients).
 -Recommendation is to treat all patients to less than 140/90 mm Hg to 140/90 mm Hg at 65 years of age.
 -Recommendation is to transition from target of 130/80 mm Hg to 140/90 mm Hg at 65 years of age.
 -Recommendation is to transition to 59 years of age (including those with diabetes) to a systolic blood pressure target of less than 130 mm Hg. For patients 30 years and older, a diastolic blood pressure target of less than 90 mm Hg is recommended.

Information from references 10, 11, 13-16, and 44.

Am Fam Physician. 2022;106(6):721-722

```
61
```

	Studies	Interve	ntion	Control		RR (95% Cl) per 10 mm reduction in systolic blood pressure	Hg P _{trend}
		Events	Participants	Events	Participants		
Major cardiovascular e	vents						0.22
<130	4	542	4547	530	3881	0.63 (0.50-0.80)	
130-139	17	5375	47103	5856	47167	0.87 (0.82-0.92)	
140-149	7	4365	33333	4694	33062	0.79 (0.72-0.87)	
150-159	13	1289	21290	1257	20088	0-80 (0-71-0-91)	
≥160	14	1638	31045	1731	24060	0.74 (0.69-0.79)	
Total						0.80 (0.77-0.83)	
Coronary heart disease							0.93
<130	5	489	6071	620	5395	0.55 (0.42-0.72)	
130-139	18	2258	47608	2461	47670	0.88 (0.80-0.96)	
140-149	8	1225	34834	1307	34581	0.80 (0.69-0.94)	
150-159	12	409	20386	442	19788	0-84 (0-68-1-05)	
>160	13	481	28086	471	21113	0.82 (0.73-0.92)	
Total						0.83 (0.78-0.88)	
Samulan							0.38
-130	100	49	3660	47	2084	0.65 (0.37.1.57)	0.36
130 130	10	1101	3009	-+/	47670	0.03 (0.27-1.37)	
130-139	10	2120	24166	1403	247070	0.73 (0.82-0.83)	
150-150	11	638	10636	707	10,026	0.65 (0.54-0.78)	
-160	16	739	21603	945	24613	0.70 (0.64-0.78)	
Zitoo	13	120	31003	0.43	24013	0.70 (0.61-0.70)	
Total						0.73 (0.08=0.77)	
Heart failure			10000	10000	12232233		0.27
<130	з	137	3009	138	2984	0-83 (0-41-1-70)	
130–139	15	1493	44029	1778	44104	0.75 (0.66-0.85)	
140-149	6	1121	32665	1207	32828	0.83 (0.70-1.00)	
150-159	7	304	8507	271	7945	- 0.96 (0.71-1.30)	
=160	12	229	26541	300	19579	0.61 (0.54-0.70)	
Total						0.72 (0.67-0.78)	
Renal failure							0.52
130-139	5	320	14661	317	14711	1.02 (0.82-1.26)	
140-149	2	76	10945	60	11045	► 3.23 (0.73-14.30)	
150-159	4	464	7278	428	6755	0.90 (0.76-1.05)	
a160	5	30	7004	29	6532	0.94 (0.56–1.56)	
Total						0.95 (0.84-1.07)	
All-cause mortality							0.79
<130	7	320	7733	410	7059	0.53 (0.37-0.76)	
130-139	18	3596	47608	3782	47 670	0.89 (0.82-0.98)	
140-149	7	3338	34166	3318	34347	0.99 (0.89-1.09)	
150-159	12	1127	20705	1197	19511	0.78 (0.69-0.90)	
=160	13	1394	28086	1291	21113	0.86 (0.80-0.92)	
Total						0.87 (0.84-0.91)	
Total	13	1394	28086	1291	21115 RR	0-87 (0-84-0-91) 2 ystolic blood pressure	

Relative risks compar	ing SBP goal < 130 m	m Ha versus higher go
CV Event	Relative Risk	95% CI
I MI	0.86	0.76-0.99
l Stroke	0.77	0.65-0.91
Heart failure	0.75	0.56-0.99
l CVD composite	0.83	0.75-0.92

ORIGINAL ARTICLE

Optimal Antihypertensive Systolic Blood Pressure: A Systematic Review and Meta-Analysis

Figure 2. Major cardiovascular disease events.

S Mainht (
weight, i
13.9
12.3
16.0
5.8
12.3
20.9
18.7
100.0
22.8
29.5
6.7
41.0
100.0

Whelton P. et al. Hypertension November 2024;81:2329-2339.

ORIGINAL ARTICLE

A Randomized Trial of Intensive versus Standard Blood-Pressure Control

The SPRINT Research Group*

Published online at NEJM.org November 9, 2015 N Engl J Med. 2015 Nov 26;373:2103-16.

SPRINT Systelic Blood Pressure Intervention Trial

SPRINT Major Exclusion Criteria

- Stroke (SPS3)
- Diabetes (ACCORD)
- Congestive heart failure (symptoms or EF < 35%)
- Proteinuria >1g/d
- CKD with eGFR < 20 mL/min/1.73m² (MDRD)
- Adherence flags anywhere in the chart
- Non-Ambulatory
- Living in a Nursing Home

SPRINT Research Group, NEJM 2015; 373:2103-2116.

SPRINT For the Process Research Print	Baseline Participants	Characte 75 Year	eristics s or Ol	: der
		Intensive	Standard	n-value
	Age (vears)	79.8 ± 3.9	79.9 ± 4.1	0.405
	Gender (female)	499 (37.9)	501 (38)	0.992
	Race/Ethnicity	(2.13)		0.879
	White	977 (74.2)	987 (74.8)	
	Black	225 (17.1)	226 (17.1)	
	Hispanic	89 (6.8)	85 (6.4)	
	Other	26 (2)	21 (1.6)	
	History of CVD	338 (25.7)	309 (23.4)	0.197
	10-year Framingham risk (%)	24.2 (16.8-32.8)	25 (17-33.4)	0.475
	Number of antihypertensive meds	1.9 ± 1	1.9 ± 1	0.173
	Baseline blood pressure (mmHg) Systolic	141.6 ± 15.7	141.6 ± 15.8	0.986
		71.5 ± 11	70.9 ± 11	0.177
	Body Mass Index (kg/m²)	27.8 ± 4.9	27.7 ± 4.6	0.464
	eGFR (CKD-EPI, ml/min/1.73m ²)	61.4 ± 17	61.2 ± 16.7	0.764
	eGFR<60 ml/min/1.73m ²	614 (46.9)	608 (46.4)	0.859
	Urine albumin / creatinine (mg/g)	13 (7.2-31.6)	13.4 (7.2-33.4)	0.505
	Total cholesterol (mg/dL)	181.4 ± 39	181.8 ± 38.7	0.767
	Fasting plasma glucose (mg/dL)	97.9 ± 12.1	98.2 ± 11.6	0.606
Villiamson et al. JAMA,	2016; 315:2673-82			

⁶⁹

Experience in the Six Pre-specified Subgroup Populations of Interest

Primary Ou		All C	ause Mo	ortality					
Subgroup	HR	P*(Treatment by subg	group interaction)						
Overall	0.75 (0.64,0.89)	₽	—	Subgroup	Intensive	Standard	HR	Int P	1
lo Prior CKD	0.70 (0.56,0.87)	0.36	-	Overall	155/4678 (3.31)	210/4683 (4.48)	0.73 (0.60,0.90)		-
Prior CKD	0.82 (0.63,1.07)			No Prior CKD	85/3348 (2.54)	115/3367 (3.42)	0.75 (0.57,1.00)	0.76	-
\ge < 75	0.80 (0.64,1.00)	0.32		Prior CKD	70/1330 (5.26)	95/1316 (7.22)	0.73 (0.53,1.00)		-
Age≥75	0.67 (0.51,0.86)	B	_	Age < 75	82/3361 (2.44)	104/3364 (3.09)	0.77 (0.58,1.03)	0.58	
Female	0.84 (0.62,1.14)	0.45		Age≥75	73/1317 (5.54)	106/1319 (8.04)	0.68 (0.50,0.92)		
Male	0.72 (0.59,0.88)		_	Female	46/1684 (2.73)	54/1648 (3.28)	0.85 (0.57,1.26)	0.49	
African-American	0.77 (0.55,1.06)	0.83		Male	109/2994 (3.64)	156/3035 (5.14)	0.71 (0.55,0.91)		
Non African-American	0.74 (0.61,0.90)		_	African-American	53/1454 (3.65)	55/1493 (3.68)	0.96 (0.65,1.40)	0.06*	
No Prior CVD	0.71 (0.57,0.88)	0.39	_	Non African-American	102/3224 (3.16)	155/3190 (4.86)	0.64 (0.50,0.82)		
Prior CVD	0.83 (0.62,1.09)		-	No Prior CVD	106/3738 (2.84)	140/3746 (3.74)	0.75 (0.58,0.96)	0.78	
SBP ≤ 132	0.70 (0.51,0.95)	0.77		Prior CVD	49/940 (5.21)	70/937 (7.47)	0.70 (0.48,1.02)		
32 < SBP < 145	0.77 (0.57,1.03)		_	$SBP \le 132$	46/1583 (2.91)	64/1553 (4.12)	0.73 (0.49,1.07)	0.70	
SBP ≥ 145	0.83 (0.63,1.09)		∎่	132 < SBP < 145	41/1489 (2.75)	63/1549 (4.07)	0.69 (0.46,1.03)		
*Un	adjusted for multiplicity	0.50 0.75 Hazard	1.0 1.2 Ratio	SBP ≥ 145	68/1606 (4.23)	83/1581 (5.25)	0.81 (0.59,1.13)		0.40 0.60 1.0 Hazard Ratio
e SPRINT Resear	ch Group. N En	gl J Med. 2015;3	73:2103-2116	i	*p=0.34, at	fter Hommel	adjustment f	or mul	tiple compar

Number of Participants with a Monitored Clinical Measure During Follow-up in SPRINT SENIOR

	Inte	nsive	Sta	ndard		
	Ν	%/yr	Ν	%/yr	HR	p-value
Sodium<130 mmol/L	66	1.7	44	1.2	1.51	0.034
Sodium>150 mmol/L	1	<0.1	0	-	-	0.290
Potassium<3 mmol/L	17	0.4	11	0.3	1.50	0.303
Potassium>5.5 mmol/L	68	1.8	64	1.7	1.01	0.975
Orthostatic hypotension	277	8.3	288	8.8	0.90	0.242
Orthostatic hypotension with dizziness	25	0.6	17	0.4	1.44	0.252

N denotes participants with events

Orthostatic hypotension defined as drop in systolic BP \geq 20 mmHg or drop in diastolic \geq 10 mmHg 1 minute after standing. Standing blood pressures were measured at screening, baseline, 1, 6, and 12 months and yearly thereafter. Participants were asked if they felt dizzy at the time the orthostatic measure was taken. <u>Falls were also not more common in the intensive group.</u>

Williamson et al. JAMA, 2016; 315:2673-82

CORLOERecommendations for Treatment of Hypertension in Older PersonsIATreatment of hypertension with a SBP treatment goal of less than 130 mm Hg is recommended for non- institutionalized ambulatory community-dwelling adults (≥65 years of age) with an average SBP of 130 mm Hg or
I A Treatment of hypertension with a SBP treatment goal of less than 130 mm Hg is recommended for non- institutionalized ambulatory community-dwelling adults (≥65 years of age) with an average SBP of 130 mm Hg or
nigner.
IIaC-EOFor older adults (≥65 years of age) with hypertension and a high burden of co-morbidity and limited life expectancy, clinical judgment, patient preference, and a team-based approach to assess risk/benefit is reasonable for decisions regarding intensity of BP lowering and choice or antihypertensive drugs. (Shared-Decision Making)

SPRINT-MIND: Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial Table 2. Incidence of Probable Dementia and Mild Cognitive Impairment by Treatment Group Treatment Group SBP < 120 mm Hg SBP < 140 mm Hg Intensive Standard N=4278 N=4285 Cases per 1000 No. With No. With Cases per 1000 Outcome/Person-Years Person-Years Outcome/Person-Years Person-Years Hazard Ratio (95% CI)^a P Value Outcomes Probable dementia 149/20569 7.2 8.6 0.83 (0.67-1.04) .10 176/20378 Mild cognitive impairment^b 287/19690 14.6 353/19281 18.3 0.81 (0.69-0.95) .007 24.1 .01 Composite of mild cognitive 402/19873 20.2 469/19488 0.85 (0.74-0.97) impairment or probable dementia ^b Participants adjudicated as having probable dementia at the first follow-up ^a Intensive treatment group vs standard treatment group based on Cox proportional hazards regression. visit (year 2) do not contribute to the analyses of mild cognitive impairment. Treatment lasted a median of 3 years, and patients were followed for cognitive outcomes over a total of 5 years. JAMA. 2019 Feb 12;321:553-561.

SPECIAL POPULATIONS

In Terms of Benefit on Cognitive Function in the Older Patient, the Concept of "Pack-Years of smoking" in relation to HTN is important.

It is more important to begin Controlling BP Earlier in Life, Than to Believe You Can Reverse Changes in Vascular and White Matter Disease After 60 Years of Age!

