Is It Time to Treat Heart Failure Like Cancer

Albert J. Hicks III, MD, MPH

Assistant Professor University of Maryland School of Medicine Section Chief Advanced Heart Failure & Transplant Medical Director Heart Transplant Baltimore, MD

CONTINUING EDUCATION COMPANY

1

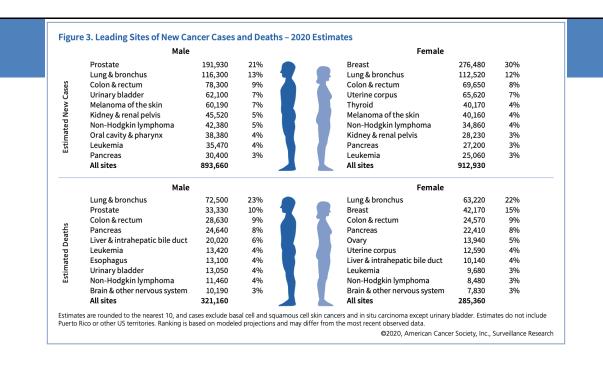
Disclosure

Consultant: Alnylam; Boehringer Ingelheim;

BridgeBio

Speakers' Bureau: Alnylam; Boehringer Ingelheim;

BridgeBio

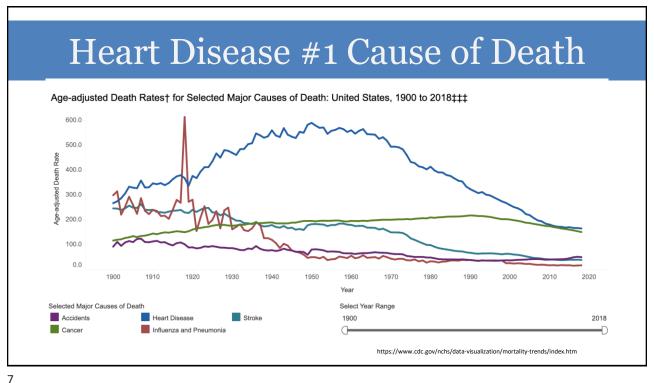


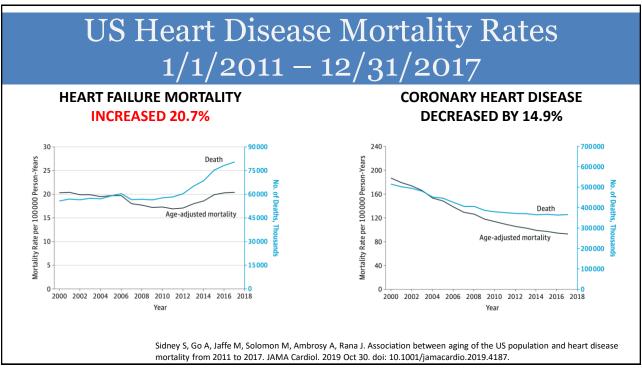
(CONTINUING EDUCATION COMPANY

Objectives

- To understand the high mortality rate associated with a heart failure diagnosis
- To be able to explain the pathophysiologic mechanisms that contribute to the mortality rate associated with heart failure with reduced ejection fraction (HFrEF)
- After hearing the presentation, the participant should be able to apply referral guidelines for Advanced Heart Cardiology to their practice

3




Cancer

- According to the NIH National Cancer Institute Cancer Trends Progress Report the death rate for all cancers combined in 2016 was 155.7/100,000
- There are therapies (most curative) for cancer if caught early enough
- Most cancers are treated by an Oncologist
- Oncology consultations tend to be triggered by radiology once lesions are discovered and do not wait for primary physician to refer

5

So is Heart Failure as Deadly as Cancer?

US Heart Failure Statistics

- US adults 65 years and older increased 22.9% from 41.4 million to 50.9 million between 1/1/2011 12/31/2017
 - Population of adults younger than 65 years increased by only 1.7%
- Age-adjusted Mortality rates
 - Decreased 5.0% for Heart Disease (HD)
 - Decreased 14.9% for Coronary Heart Disease (CHD) while increasing
 - INCREASED 20.7% for HEART FAILURE
- The number of Heart Failure Deaths INCREASED by 38 %
 - A total of 80% of HD deaths occurred in the group of adults aged 65 years and older

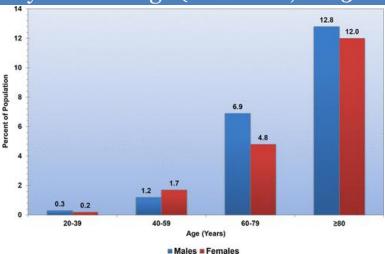
Sidney S, Go A, Jaffe M, Solomon M, Ambrosy A, Rana J. Association between aging of the US population and heart disease mortality from 2011 to 2017. JAMA Cardiol. 2019 Oct 30. doi: 10.1001/jamacardio.2019.4187. [Epub ahead of print]

9

US Heart Failure Statistics

 "With the number of adults aged 65 years and older projected to increase an additional 44% from 2017 to 2030, innovative and effective approaches to prevent and treat HD, particularly the substantially increasing rates of heart failure, are needed" (Sidney et al JAMA Cardiol 2019)

Sidney S, Go A, Jaffe M, Solomon M, Ambrosy A, Rana J. Association between aging of the US population and heart disease mortality from 2011 to 2017. JAMA Cardiol. 2019 Oct 30. doi: 10.1001/jamacardio.2019.4187. [Epub ahead of print]


US Heart Failure (HF) Statistics

- 6.5 million Adults in the US have heart failure
- HF was a contributing cause of 1 in 8 deaths in 2017
- Approximately HALF of people who develop HF Die w/i 5 yrs of initial diagnosis
- NYHA Class IV patients have an annual Mortality rate of > 50%
- HF Goal Directed Medical Therapy (GDMT) only Reduces Mortality in HFrEF
- Highest Mortality Rates in African American Men

Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528. Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death, 1999–2017. Accessed January 7, 2019.

11

Prevalence of Heart Failure for Adults ≥ 20 Years by Sex and Age (NHANES, 2013–2016)

Emelia J. Benjamin. Circulation. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association, Volume: 139, Issue: 10, Pages: e56-e528, DOI: (10.1161/CIR.000000000000659)

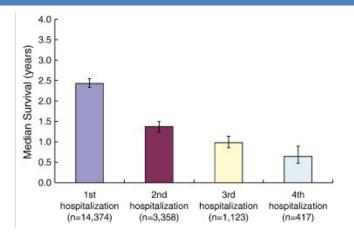
Heart Failure Hospitalizations Increase Mortality

Mortality Associated w/ HF Hospitalization

- 30-day mortality 10.4%
- 1-year mortality 22.0%
- 5-year mortality 42.3%

Loehr LR, Rosamond WD, Chang PP, et al. Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study). Am JCardiol. 2008;101:1016–22

13


Heart Failure Hospitalizations Increase Mortality

14,374 Patients Hospitalized w/ New Dx of Heart Failure in British Colombia, Canada 2000 – 2004

- 7401 patients died during the follow up period
- The 30-day all-cause mortality after the first HF hospitalization was 12%, and the 1-year mortality was 34%
- The median survival (50% mortality) was 2.4 years
- Significant increase in all-cause mortality with advanced age

Setoguchi S, Stevenson L, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J 2007 Aug; 154(2):260-6

Heart Failure Hospitalizations Increase Mortality

Setoguchi S, Stevenson L, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J 2007 Aug;154(2):260-6

15

Heart Failure Hospitalizations Increase Mortality

Mortality Significantly ↑ After Each Additional HF Hospitalization

Median survival times after each HF hospitalization

First
Second
Third
Fourth
2.4 years (95% CI 2.3-2.5)
1.4 years (95% CI 1.2-1.5)
1.0 years (95% CI 0.9-1.1)
0.6 years (95% CI 0.5-0.9)

• Most patients were alive 2 years after the first HF hospitalization, but approximately half were dead by 1 year after 3 hospitalizations

Setoguchi S, Stevenson L, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J 2007 Aug; 154(2):260-6

Why Is Heart Failure So Deadly

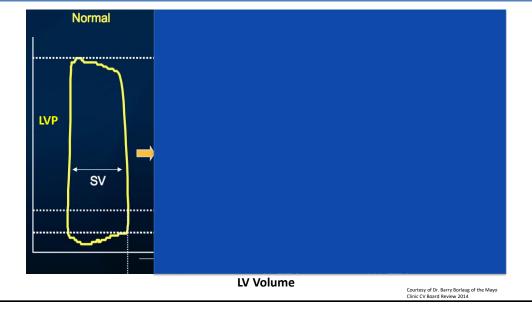
Review of Heart Failure Pathophysiology

17

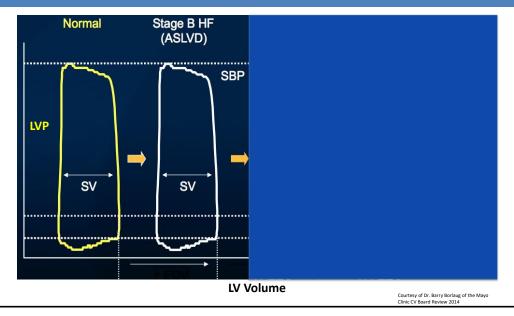
HFrEF Hemodynamics

Activation Neurohormonal Cascade

- Sympathetic nervous system (SNS)
- Renin-angiotensin-aldosterone system (RAAS)
- Arginine-vasopressin (AVP) and endothelin (ET) axis

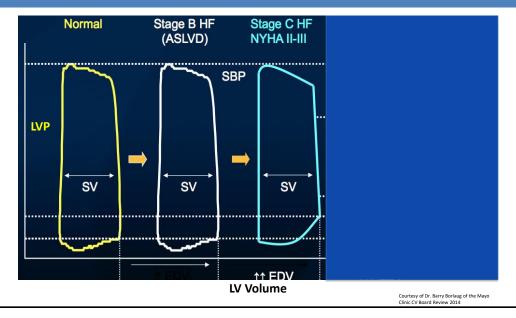

Normal Heart

Heart Failure With Reduced Ejection Fraction

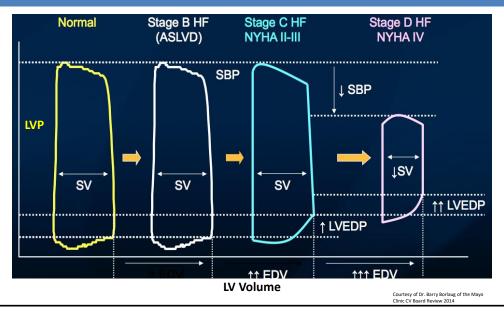

Courtesy of Dr. Barry Borlaug of the Mayo Clinic CV Board Review 2014

19

Systolic Dysfunction Stage Progression

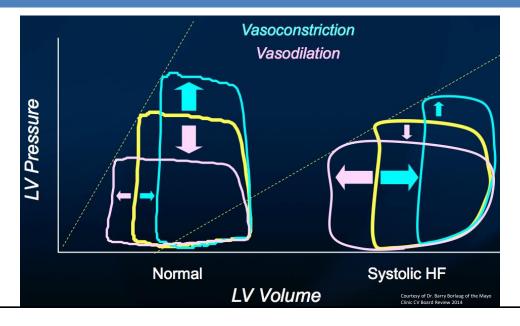


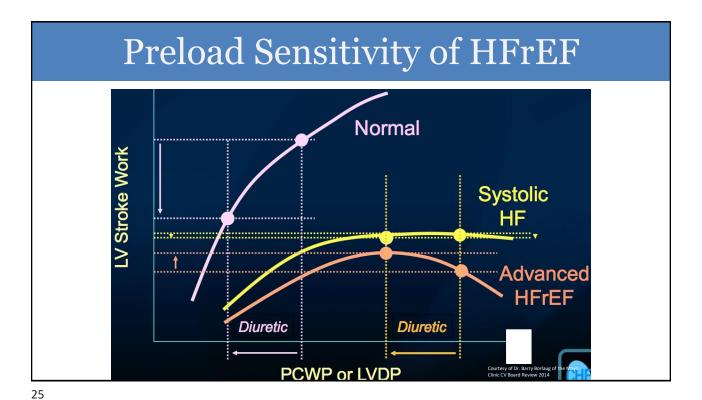
Systolic Dysfunction Stage Progression



21

Systolic Dysfunction Stage Progression




Systolic Dysfunction Stage Progression

23

Afterload Sensitivity of HFrEF

Signs & Symptoms of Heart Failure

	History- Symptoms	Exam- Signs	Tests
Congestion (Fluid)	 Dyspnea On Exertion Orthopnea PND Bendopnea Cough Abdominal distension Weight gain Edema 	 Elevated JVP 3rd Heart Sound Lung Crackles Ascites Pulsatile Liver Edema 	 ↑ Liver Enzymes BNP or NTpBNP Wet Lungs on CXR Echocardiogram
Cardiogenic Shock	 Short of Breath at Rest Fatigue Nausea/Dry Heaving Poor Appetite Confusion Weight Loss 	Low BPFast HRCool ExtremitiesLow Urination	 ↑Creatinine ↑ Liver Enzymes Lactic Acid Echocardiogram Right Heart Catheterization

History & Physical Predictors of HF

	Sensitivity	Specificity	PPV	NPV	Odds Ratio
Rales > 1/3	15	89	69	38	1.4
JVP > 12	65	64	75	52	3.3
HJR	83	27	65	49	1.7
S 3	62	32	61	33	0.8
Orthopnea	86	25	66	51	2.1
Edema	41	66	67	40	1.3

- ESCAPE Trial Substudy: 192 pts hospitalized with advanced systolic heart failure → RHC
- History and Physical Exam findings correlating to PCWP >22

Drazner MH. Circ Heart Fail. 2008 Sep;1(3):170-7.

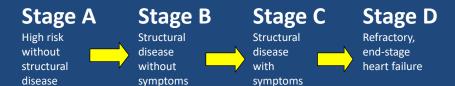
27

History & Physical Predictors of HF

	Sensitivity	Specificity	PPV	NPV	Odds Ratio
Rales > 1/3	15	89	69	38	1.4
JVP > 12	<mark>65</mark>	64	<mark>75</mark>	<mark>52</mark>	3.3
HJR	83	27	65	49	1.7
S 3	62	32	61	33	0.8
<mark>Orthopnea</mark>	86	<mark>25</mark>	<mark>66</mark>	<mark>51</mark>	<mark>2.1</mark>
Edema	41	66	67	40	1.3

- ESCAPE Trial Substudy: 192 pts hospitalized with advanced systolic heart failure → RHC
- History and Physical Exam findings correlating to PCWP >22

Drazner MH. Circ Heart Fail. 2008 Sep;1(3):170-7.

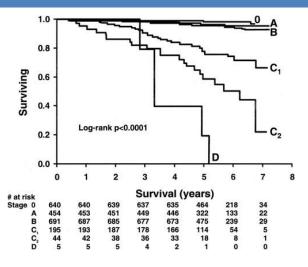

Classification of Heart Failure

ACCF/AHA Stages of HF		NYHA Functional Classification		
A	At high risk for HF but without structural heart disease or symptoms of HF	None		
В	Structural heart disease but without signs or symptoms of HF	I	No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.	
C	Structural heart disease with prior or current symptoms of HF	I	No limitation of physical activity. Ordinary physical activity does not cause symptoms of HF.	
		II	Slight limitation of physical activity. Comfortable at rest, but ordinary physical activity results in symptoms of HF.	
		III	Marked limitation of physical activity. Comfortable at rest, but less than ordinary activity causes symptoms of HF.	
D	Refractory HF requiring specialized interventions	IV	Unable to carry on any physical activity without symptoms of HF, or symptoms of HF at rest.	

Yancy C et al. Circulation 2013;128:e240-e327

29

ACC/AHA Heart Failure Stages



Main goals:

Relieve symptoms, prevent progression, reduce mortality

Hunt et al. 2009 ACC/AHA Guidelines. J Am Coll Cardiol 2009;53:e1-90.

Survival By ACC/AHA Stage of HF

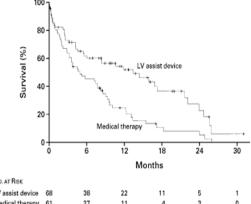
Khawaja Afzal Ammar. Circulation. Prevalence and Prognostic Significance of Heart Failure Stages, Volume: 115, Issue: 12, Pages: 1563-1570, DOI: (10.1161/CIRCULATIONAHA.106.666818)

31

OPTIME Study

No survival benefit with Milrinone in Stage D HF

	<u>Placebo</u>	Milrinone
• Death or readmit within 60 days	35.3%	35.0%


- Mean # days of hosp 13.5 13.4 within 60 days
- Death within 60 days 8.9% **10.3%**

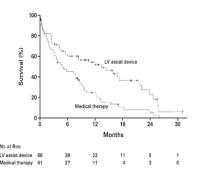
JAMA 2002;287:1541

REMATCH

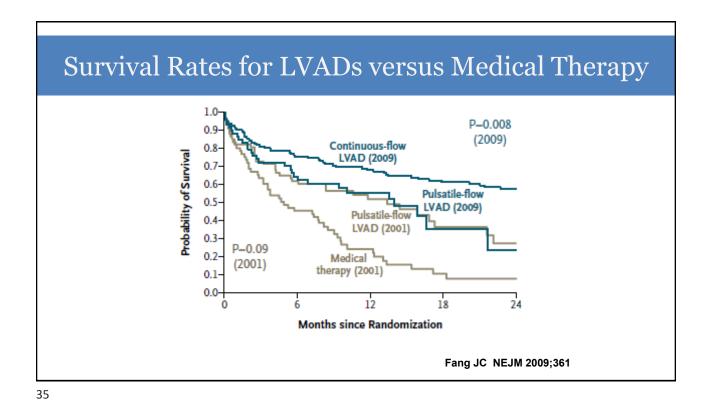
Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure

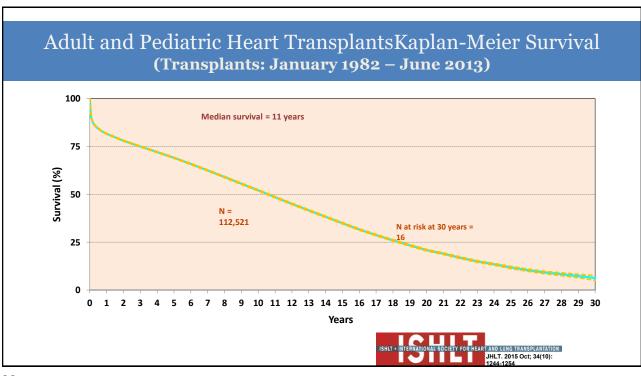
- Randomized clinical trial of **Optimal Me**
- Non-transplant candidates (n=129)
 - EF ≤ 25%
 - peak VO2 < 12 ml/kg/min
 - or continuous infusion inotropes
- 25% One Year Survival in Medical Th
- FDA approval for XVE as destination thera

No. at Risk LV assist device Medical therapy 27


Rose E, Gelijns A, Moskowitz A, et al. Long-term use of a left ventricular assist device for end stage heart failure. N Engl J Med 2001; 345:1435-43

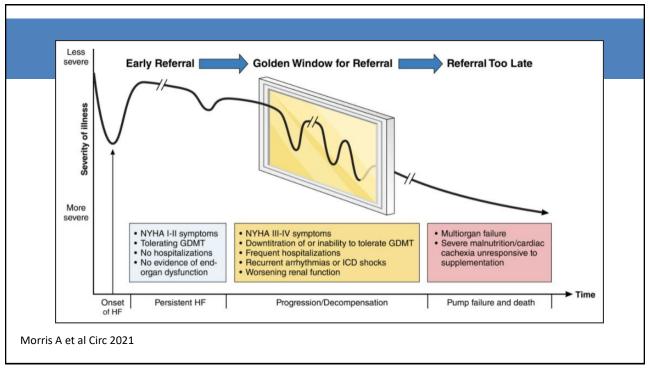
33


REMATCH


Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure

- Randomized clinical trial of Optimal Medical Therapy vs. Pulsatile flow LVAD
- Non-transplant candidates (n=129)
 - EF ≤ 25%
 - peak VO2 < 12 ml/kg/min
 - or continuous infusion inotropes
- 25% One Year Survival in Medical Therapy Cohort
- FDA approval for XVE as destination therapy

Rose E, Gelijns A, Moskowitz A, et al. Long-term use of a left ventricular assist device for end stage heart failure. N Engl J Med 2001; 345:1435-43


Strategies of Heart Failure Treatment

- Determine the Ejection Fraction
- Monitor for heart failure medication intolerance
- Look for easily reversible causes
 - Coronary Disease (Stress test, Calcium Score)
 - Metabolic (TSH, Ferritin, etc)
 - Drug (Amphetamine/cocaine) or ETOH abuse
 - Arrhythmia (ECG)
- If LVEF ≤ 40% Refer to HF Cardiologist or General Cardiologist

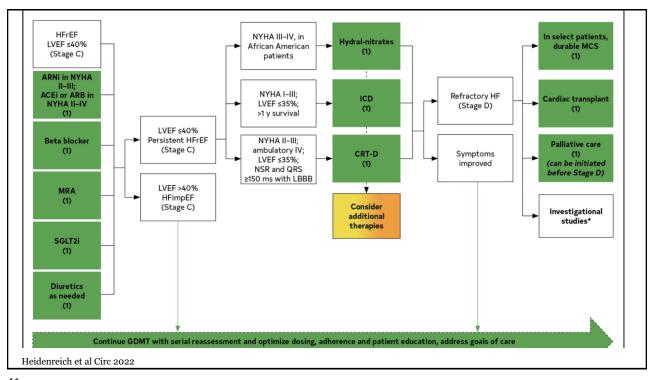
37

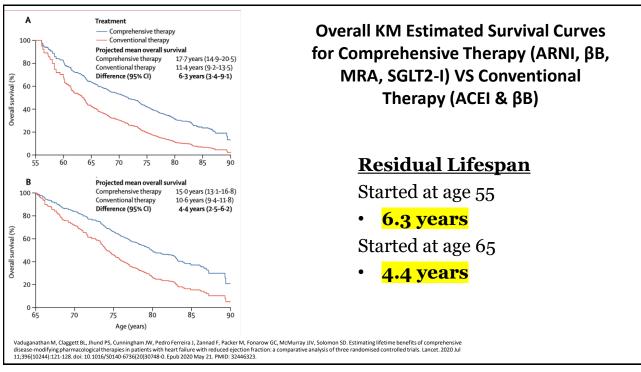
Timing of Referral to Heart Failure Cardiologist

- Earlier is better
- Prevents chance of multiorgan damage
- Patient has a better opportunity to become a Transplant recipient

39

Circulation


Volume 144, Issue 15, 12 October 2021; Pages e238-e250 https://doi.org/10.1161/CIR.000000000001016


AHA SCIENTIFIC STATEMENT

Guidance for Timely and Appropriate Referral of Patients With Advanced Heart Failure: A Scientific Statement From the American Heart Association

Alanna A. Morris, MD, MSc, FAHA, Chair , Prateeti Khazanie, MD, MPH, Vice Chair, Mark H. Drazner, MD, MSc, Vice Chair, Nancy M. Albert, PhD, Khadijah Breathett, MD, MS, FAHA, Lauren B. Cooper, MD, MHS, Howard J. Eisen, MD, Patrick O'Gara, MD, Stuart D. Russell, MD, and on behalf of the American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; and Council on Hypertension

41

Table 1. Clinical Clues to Help Identify Patients With Advanced HF (Table view)

Inotrope dependence

LVEF ≤25%, particularly with high-risk features on echocardiogram (grade III or IV diastolic dysfunction; significant RV dysfunction; high pulmonary artery pressures or severe MR despite attempts at decongestion)

≥2 Hospitalizations or emergency department visits for decompensated HF in 12 mo

Persistent NYHA class III or IV symptoms, including fatigue and confusion

High-risk biomarker profile (eg, hyponatremia, very elevated natriuretic peptides or troponin)

Escalating doses of diuretics (eg, >160 mg/d furosemide) or persistent edema despite escalating diuretic doses

Downtitration of GDMT as a result of hemodynamic intolerance such as hypotension (SBP <90 mm Hg), dizziness, excessive fatique, or nausea

Discontinuation of ACE inhibitor/ARB/ARNI because of hypotension or renal intolerance

Progressive renal failure with rising creatinine/BUN

Recurrent atrial fibrillation or VT with ICD shocks

Nonresponse to cardiac resynchronization therapy

Cardiac cachexia (ie, unintentional loss of >5% of body weight attributable to HF)

High mortality risk from validated risk prediction models or calculators

43

Summary

- Heart disease remains the #1 cause of death in the US and HF is the deadliest CV condition
- Comprehensive therapy with ARNI, BB, MRA, SGLT2-I improves survival
- Recognize the signs and symptoms of CHF exacerbation and cardiogenic shock
- Have a low threshold to refer to Advanced HF Cardiologists

Case

35 y/o woman is admitted for observation to the hospital with progressively worsening right chest tenderness. On exam she is noted to have a palpable mass on the R breast. CT chest and mammogram reveal a 3 x 3 cm lesion concerning for malignancy.

(CONTINUING EDUCATION COMPANY

45

What Is the Next Step?

- A. Send her home and tell her to follow up with her PCP
- Refer her to a PCP that sees a lot of patients with cancer
- C. Treat Conservatively, do not refer to a specialist
- D. Consult Oncologist immediately to determine diagnostic (FNA, resection, LN biopsy) and Treatment course (Mastectomy, chemotherapy, radiation, lumpectomy, LN biopsy, etc.)

CONTINUING EDUCATION COMPANY