Aldosterone: The Forgotten Hormone in Hypertension

Jan N. Basile, MD, FACP, FASH, FAHA

Professor of Medicine Division of Cardiology Medical University of South Carolina Ralph H Johnson VA Medical Center Previous Vice-Chair of Clinical Programs AHA Council of Hypertension US National Leader SURPASS-CVOT Charleston, SC basilejn@musc.edu

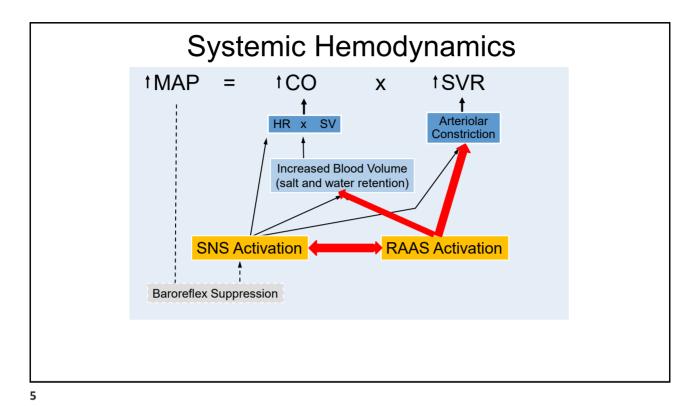
CONTINUING EDUCATION COMPANY

Disclosure

Consultant: Alnylam (Hypertension); Blue Earth Diagnostics; Corcept; Eli Lilly (SURPASS-CVOT); Idorsia; Medtronic; Mineralys; Novo Nordisk; ReCor (Renal Denervation); ReCor-PI (Renal Denervation); UpToDate (Hypertension Section)

Research Grant: Ablative Solutions (Target BP I); Corcept; Eli Lilly (TRIUMPH); ReCor (Radiance I and II); Sonivie – THRIVE Study

CONTINUING EDUCATION COMPANY


Today's Objectives

- Discuss the History of the R-A-A System and the observation that MRAs have been reserved mostly for patients with resistant hypertension.
- Discuss the resurgence of interest in primary aldosteronism and specific phenotypes where aldosterone dysregulation is involved in BP control.
- Contrast the Mineralocorticoid Receptor Antagonists (MRAs) with the Aldosterone Synthase Inhibitors (ASIs), both of which may play a larger role in the future treatment of aldosterone dysregulation and hypertension.

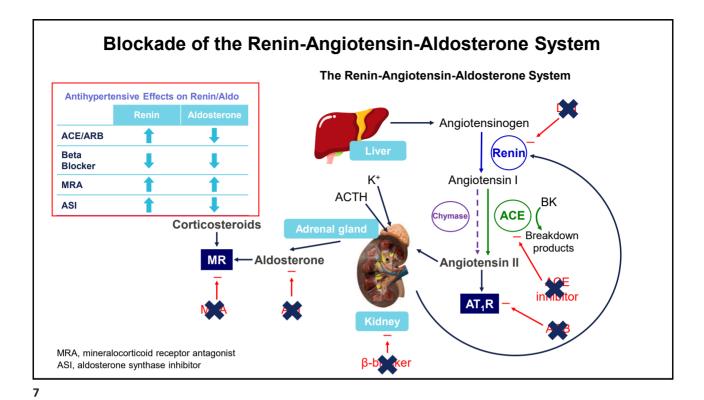
3

Today's Objectives

 Discuss the History of the R-A-A System and the observation that MRAs have been reserved mostly for patients with resistant hypertension.

History of the Renin-Angiotensin-Aldosterone Axis

- 1898: Tigerstadt and Bergman first described a pressor substance known as renin.
- 1936 to 1958-work first by Harry Goldblatt, and then Eduardo Menendez in Buenos Aires and Irvine Page of the Cleveland Clinic naming another pressor substance angiotensin.
- 1953: Aldosterone first discovered as a sodium retaining and potassium wasting hormone.
- 1954: Jerome Conn: reported the successful removal of an aldosterone overproducing adrenal gland in a patient with HTN and hypokalemia (Conn syndrome) and found suppressed renin, volume expansion, and non-suppressible aldosterone (Renin-Independent aldosterone excess).
- 1960: Spironolactone was first FDA approved and marketed as a potassium-sparing diuretic but mostly used in patients with hyper-aldosteronism (primary and secondary, e.g., in liver failure).
 - Progesterone-like and anti-androgen effects at high doses limited its use.
- 2003: Eplerenone marketed.

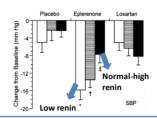

Basso N and Terragno M. A. Hypertension 2001;38(6):1246-9...

University of Michigan

First Division Chief Endocrinology & Metabolism from 1943-1973

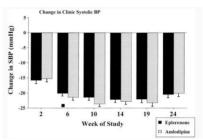
Jerome W. Conn, MD

-In Hypertension, Spironolactone (and Eplerenone) Have Been Held Mostly in Reserve for Resistant Hypertension perhaps because of their Side Effect Profile.


Of Note:

-While They Were Never Marketed for Earlier Use in the Treatment of Essential Hypertension, They Have Been Studied

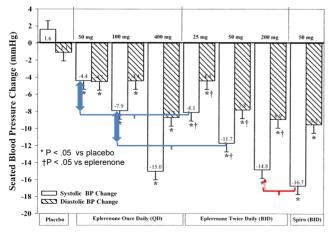
MRA Monotherapy in Essential HTN


Eplerenone 50 mg vs. Losartan 50 mg -10.3 vs. -6.9, P<.0001

- → More effective in low-renin patients
- → Equally effective in black vs. white patients

Eplerenone 50 – 200 mg vs. amlodipine 2.5 - 10 mg -20.5 mm Hg vs. -20.1, p=NS

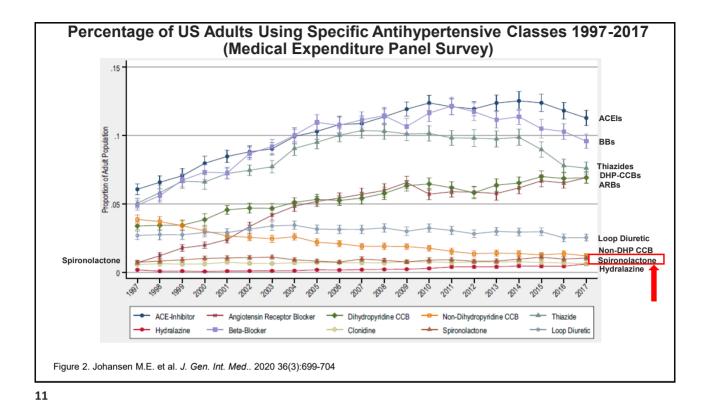
- → Equally effective
- → Better reduction in urine albumin w Eplerenone
- → AEs similar, no gynecomastia reported, potassium elevation was more frequent with eplerenone



Flack JM et al. J Am Coll Cardiol. 2003 Apr 2;41(7):1148-55 White WB,... Weber MA. Hypertension. 2003 May;41(5):1021-6

9

MR Antagonist Monotherapy in Essential HTN


Eplerenone 50 mg to 400 mg vs. Spironolactone 50 mg

Weinberger MH et al Am Jnl Hypertension 2002; 15:709-716

	Placebo	Eplerenone Once Daily			Eplerenone Twice Daily			Spironolactone Twice Daily
		50 mg	100 mg	400 mg	25 mg	50 mg	200 mg	50 mg
No. of patients	53	54	49	56	55	54	48	48
Discontinued due to AE	(2)	4 (7)	1(2)	0	1(2)	1(2)	1(2)	2 (4)
Any adverse event	23 (43)	23 (43)	28 (57)	27 (48)	24 (44)	21 (39)	27 (56)	17 (35)
Arthralgia	0	o '	O.	o	o	1(2)	3 (6)	0
Dizziness	0	2 (4)	2 (4)	1(2)	2 (4)	1(2)	3 (6)	3 (6)
Headache	9 (17)	5 (3)	9 (18)	9 (16)	5 (9)	9 (17)	6 (13)	4 (8)
Leg cramps	Ò	0	1(2)	0	0	0	3 (6)	0
Nausea	1(2)	1(2)	1(2)	3 (5)	0	0	2 (4)	0
Respiratory infection	2 (4)	2 (4)	1(2)	1(2)	5 (9)	3 (6)	6 (13)	1(2)
Sinusitus	o '	o o	4 (8)	O	1(2)	3 (6)	1(2)	1 (2)

- Eplerenone (E) is significantly more effective for BP reduction given bid than qd.
- Spiro (S) has similar BP Reduction to E at ¼ of the dose when both given bid.

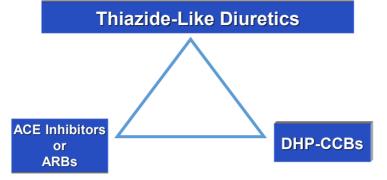
Initial Medication Selection for Those with Primary HTN

Recommendation for Initial Medication Selection for Treatment of Primary Hypertension

Referenced studies that support the recommendation are summarized in the evidence table.

COR LOE Recommendation

1. For adults initiating antihypertensive drug therapy, thiazide-type diuretics, long-acting dihydropyridine CCB, and ACEi or ARB are recommended as first-line therapy to prevent CVD.


Jones, D. et al. 2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation,

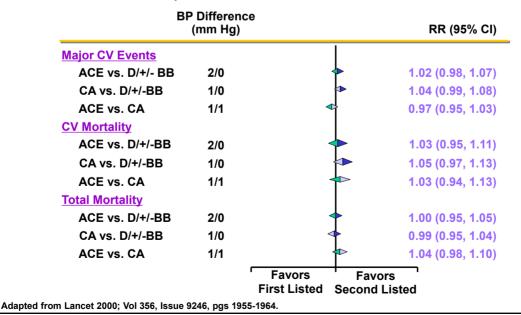
and Management of High Blood Pressure in Adults. Published ahead of print August 14, 2025, available at

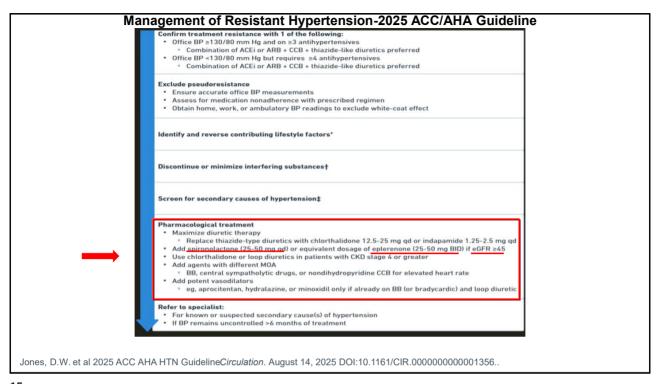
Circulation: https://www.ahajournals.org/doi/10.1161/CIR.000000000001356

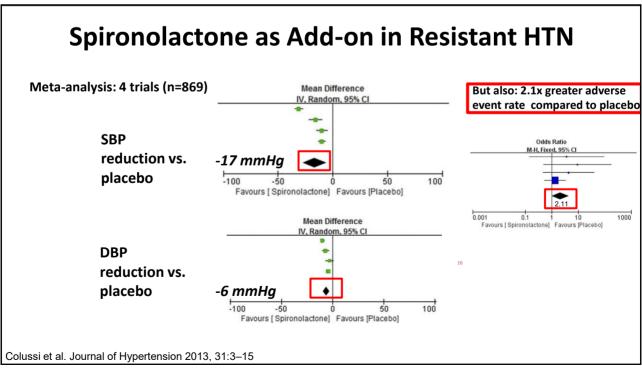
Initial Medications for the Management of Hypertension-2025

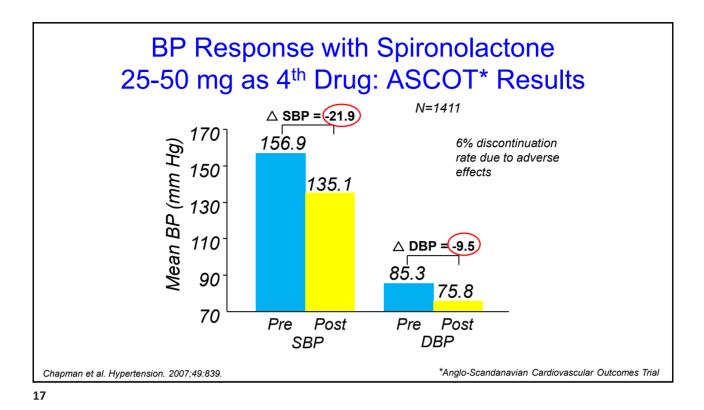
Lifestyle Modification—Especially Diet and Exercise

2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults: Report From the Panel Members Appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014; 311(5): 507-520. Feb 5, 2014

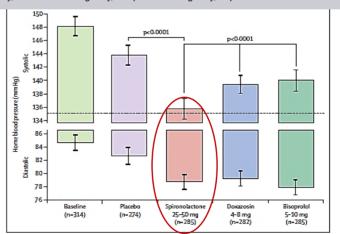

2017 ACC-AHA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. Whelton PK, Carey RM et al.


2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. Published ahead of print August 14, 2025, available at: Circulation. https://www.ahajournals.org/doi/10.1161/CIR.000000000001356 And Journal of the American College of Cardiology, published online ahead of print August 14, 2025. J Am Coll Cardiol. https://www.jacy.gdoi/10.1161/GIR.2025.05.007


13



Comparisons of Different Active Treatments


Spironolactone versus Placebo, Bisoprolol, and

Trial design: Patients (n=285, 230 completed all cycles) with Resistant Hypertension were randomized to each of four different add-on study medications, each for a 6 (lower dose) and then 12-week (Higher dose) period;

Doxazosin for Drug Resistant Hypertension (PATHWAY-2)

spironolactone 25-50 mg daily, doxazosin 4-8 mg daily, bisoprolol 5-10 mg daily, or placebo.

- Spironolactone <u>superior</u> to other agents, had <u>largest</u> added effect
- 58% achieved BP target with spironolactone (3x greater vs other agents)
- Discontinuations due to renal impairment, hyperkalemia or gynecomastia not increased with spironolactone

Williams B. Lancet 2015; 386: 2059-2068

Potency and Selectivity of MRAs

		Potency For BP Reduction	Selectivity	Metabolites	Tissue Distribution ^a (Kidney/Heart)	Adverse Effects
Spironolactone ^b	Steroidal	High	Low	Multiple, active	Higher in kidney	■ ↑ Sexual (eg, gynecomastia) ■ ↑ Hyperkalemia ■ ↑ BP reduction
Eplerenone ^b	Sterc	Low	Medium	No active metabolites	Higher in kidney	 J Sexual † Hyperkalemia Less BP Reduction

^aBased on standard whole-body quantitative analysis in healthy rats; b. FDA/EMA approved treatment of hypertension and HFrEF; Kolkhof P, et al. Handb Exp Pharmacol. 2017;243:271-305; Agarwal R, et al. Eur Heart J. 2021;42:152-161; Dhillon S. Drugs. 2013;73:1451-62.

19

Potency and Selectivity of MRAs

		Potency	Selectivity	Metabolites	Tissue Distribution ^a (Kidney/Heart)	Adverse Effects
Spironolactone ^b	oidal	High	Low	Multiple, active	Higher in kidney	 ↑ Sexual (eg, gynecomastia) ↑ Hyperkalemia ↑ BP reduction
Eplerenone ^b	Steroidal	Low	Medium	No active metabolites	Higher in kidney	■ ↓ Sexual ■ ↑ Hyperkalemia
Finerenone ^c	Nonsteroidal	High	High	No active metabolites	Balanced in heart and kidney	■ Sexual (rare) ■ Hyperkalemia ■ BP reduction thought to be less than Spiro
Based on standard whole-body quantitative analysis in healthy rats; b. FDA/EMA approved treatment of hypertension and HFrEF; c. FDA/EMA approved for the treatment of CKD associated with T2C P, blood pressure; CKD, chronic kidney disease; EMA, European Medicines Agency; FDA, US Food and Drug Administration; T2D, type 2 diabetes. olkhof P, et al. Handb Exp Pharmacol. 2017;243:271-305; Agarwal R, et al. Eur Heart J. 2021;42:152-161; Dhillon S. Drugs. 2013;73:1451-62.						

Bottom Line

- There are no head-to-head studies comparing
 Finerenone to Spironolactone specifically for BP control.
- Spironolactone is felt to be the best BP-Lowering MRA (steroidal or non-steroidal) but its side-effect profile has sometimes limited its use.

21

2nd Objective

 Discuss the resurgence of interest in primary aldosteronism and specific phenotypes where aldosterone dysregulation is involved in BP control.

There Has Been a Resurgence of Interest in Aldosterone

23

Patient with Recent Worsening of Hypertension

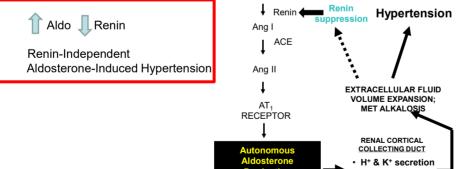
65-year-old

White Male lawyer referred to me in 2018

- · History of:
 - Hypertension x 20 years
 - S/p Uvulopalatopharyngoplasty (UPPP) for sleep apnea in 2014 and no longer snores
 - No hx of stroke, MI, CKD, HF, or diabetes
 - Obesity (BMI 32.0 kg/m²)
 - Stopped smoking in 1982, rare alcohol, low salt and reads labels
 - BP easily controlled over many years until 3 years ago
 - But control has gotten really bad over the past 6 months, now requiring 3 medicines and KCL tablets
- BPs in the office (average x 3)
 - AOBP = 168/96 mmHg (average x3) without orthostasis
 - Home BP = (average 1 week, 2 in am and pm) 166/94

- P exam-no significant findings of secondary HTN
- Labs
 - Sodium 141, Potassium 3.3, Chloride 101, CO2
 29, Anion Gap 11, BUN 17, Glucose 104, Creatinine
 0.86, eGFR >60, Ca++ 9.1, Urine for microalbumin
 24 mg/g creatinine

Antihypertensive medications	Other medications
Losartan/HCTZ 100 mg/25 QD	Atorvastatin 40 mg
Nebivolol 10 mg QD	E/C ASA 81 mg
KCL 40 meq for past 6 months	

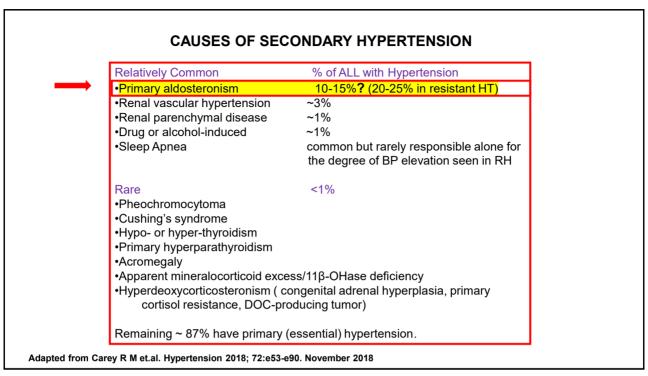

AOBP, automated office blood pressure.

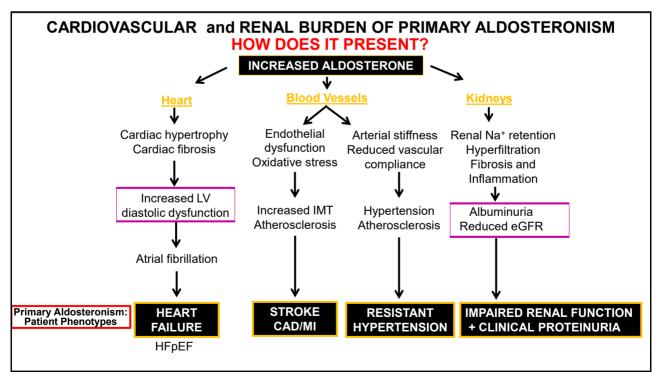
PRIMARY ALDOSTERONISM Definition

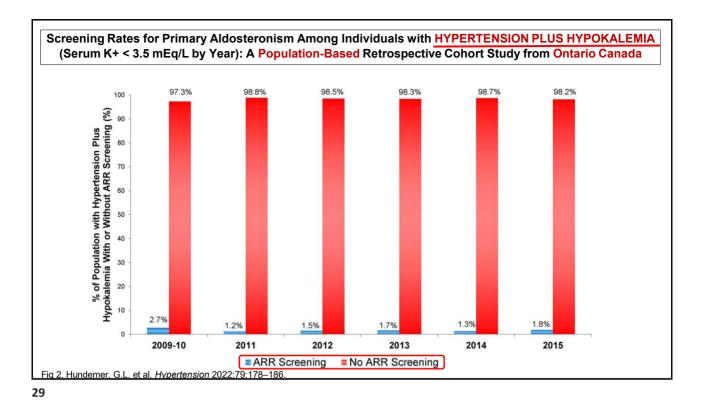
Young WF. et al. AHA Screening for Endocrine Hypertension: An Endocrine Society Scientific Statement. *Endocrine Reviews* 38:103-122,2017.

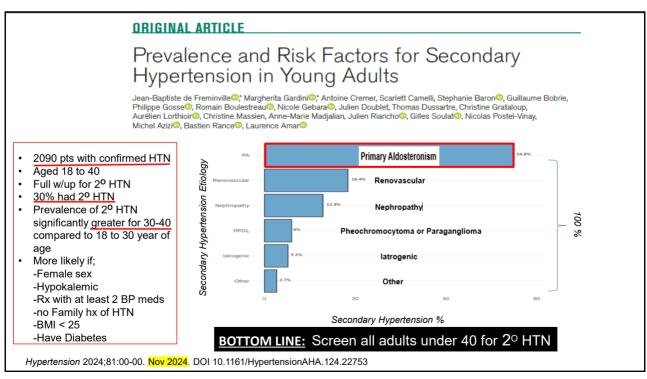
25

AUTONOMOUS ALDOSTERONE PRODUCTION IN PRIMARY ALDOSTERONISM




Angiotensinogen


(non-suppressible with salt loading)


Carey RM et al. Circulation Research. 2021;128:827-846.

Na⁺ reabsorption

2024 ESC Guidelines for Managing Elevated BP and HTN Screening: This Is New

- Renin and aldosterone should be measured in <u>all</u> patients with HTN:
 - -Primary aldosteronism and Hyperaldosteronism is common not only in secondary HTN but in early forms of hypertension.

McEvoy JW, et al; ESC Scientific Document Group. Eur Heart J. 2024:ehae178.

31

The Endocrine Society 2025: Screen All with Hypertension for Primary Aldosteronism

1. PA screening is <u>suggested</u> in <u>all</u> individuals with hypertension.

Adler, G.K.et al. Endocrine Society Guideline Journal Clin. Endocrine and Metab. July 14 2025; https://doi.org/10.1210/clinem/dgaf284.

Secondary Forms of Hypertension

Only in Resistant HTN

OTE: only 30% patients with PA hypokalemic!

Recommendations for Secondary Forms of Hypertension

References that support recommendations are summarized in the evidence table.

COR	LOE	Recommendations				
1	B-NR	2. In adults with resistant hypertension, screening for primary aldosteronism is recommended regardle of whether hypokalemia is present to increase rate of detection, diagnosis, and specific targeted therapy.	SS			

2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. Published ahead of print August 14, 2025, available at: Circulation. https://www.ahajournals.org/doi/10.1161/CIR.0000000000001356 And Journal of the American College of Cardiology, published online ahead of print August 14, 2025. J Am Coll Cardiol. https://www.jacc.org/doi/10.1016/j.jacc.2025.05.007

33

So, the Threshold for Screening for Primary Aldosteronism Seems To Be Changing!

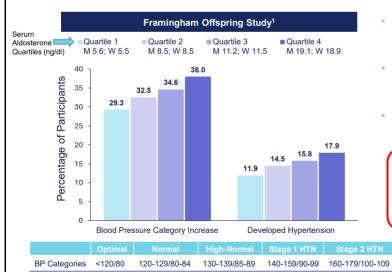
- -In all patients with Resistant Hypertension¹
- -In all Patients Suspected of Secondary Hypertension²
- -In all Young Patients < 40 years of age with HTN³
- -In All Patients with HTN?-Europeans say YES! 4
- -Suggested in All Patients with Hypertension 5

But the ACC/AHA 2025 Guideline Fell Short!!

¹Jones, D.W. et al Circulation. August 14, 2025 DOI:10.1161/CIR.00000000001356.

²Carey R M et.al. *Hypertension* 2018; 72:e53-e90. November 2018

³Hypertension 2024;81:00-00. Nov 2024. DOI 10.1161/HypertensionAHA.124.22753 ⁴McEvoy JW, et al; ESC Scientific Document Group. *Eur Heart J.* 2024:ehae178.


⁵Adler, Ó.K.et al. Endocrine Society Guideline Journal Clin. Endocrine and Metab. July 14 2025; https://doi.org/10.1210/clinem/dgaf284.

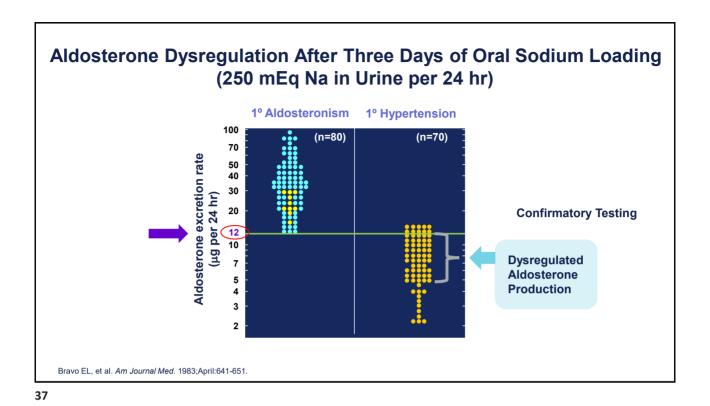
Primary Aldosteronism What's New!!

The Concept of Aldosterone Dysregulation Paralleling Hypertension Severity

35

Dysregulated Aldosterone in Previously Normotensive Individuals Is Associated with an Increased Incidence of Hypertension Over Time

- Cohort study of 1,688 normotensive participants at baseline with follow-up at 4 years¹
- Age- and sex-adjusted BP outcomes stratified by baseline serum aldosterone level quartiles¹ (mean age 55, 58% women)
- An increase in BP was defined as an increment of ≥1 BP category²

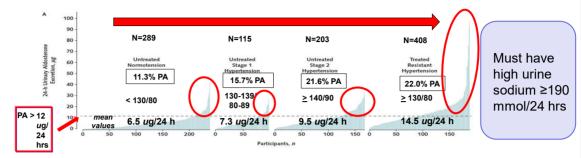

CONCLUSIONS

≥180 / ≥110

In our community-based sample, increased aldosterone levels within the physiologic range predisposed persons to the development of hypertension.

. Vasan, Ramachadran S, et al. N Engl J Med. 2004;351(1):33-41.

2. The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Arch Intern Med. 1997;157:2413-46.

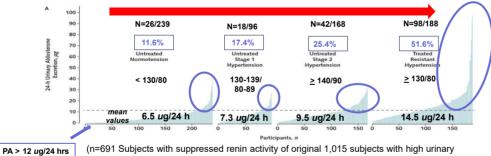


Cross-sectional study of 1,015
hypertensive subjects at 4 U.S.
academic medical centers.
(Birmingham, Boston,
Charlottesville, Salt Lake City).

All given an
Oral Sodium Suppression Test

Brown JM et.al. Annals Int Med 2020; 173:10-20.

Primary Aldosteronism (PA) Is at the End of a Spectrum of Aldosterone Dysregulation (n=1,015 Subjects on a High Sodium Load, Renin Not Known)

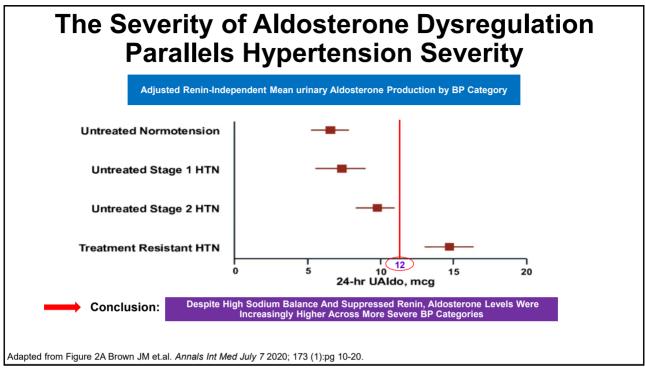

Conclusions:

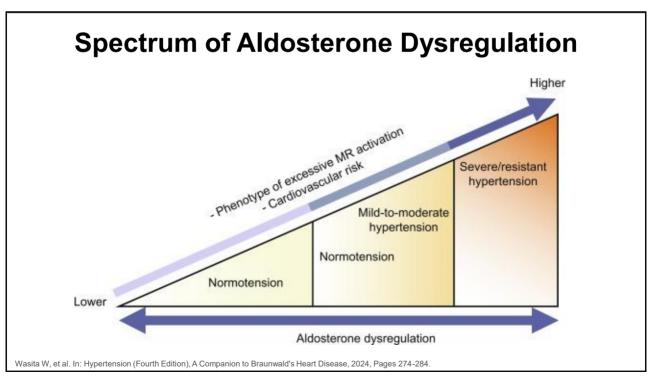
- The prevalence of primary aldosteronism (PA) is high and largely unrecognized.
- There is a spectrum of <u>aldosterone production on a high sodium load</u> that occurs in "healthy" untreated normotensives and increases with the severity of hypertension to the more often recognized patient with treatment resistant HTN.

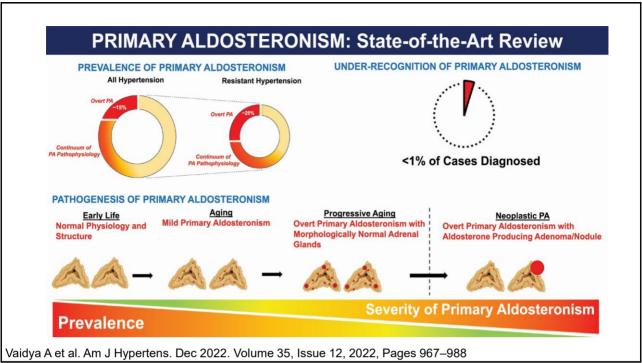
Figure 2A Brown JM et.al. Annals Int Med July 7 2020; 173 (1):pg 10-20.

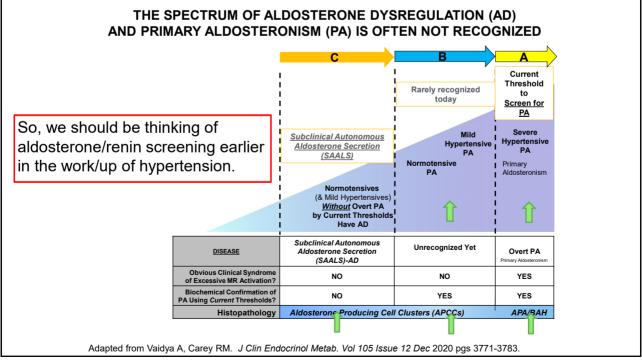
39

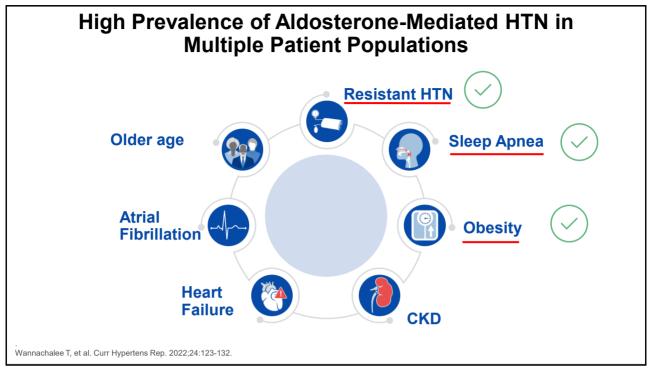
Dysregulated Aldosterone Occurs as a Spectrum (Here in 691/1015 on a High Sodium Load and with Suppressed Renin)

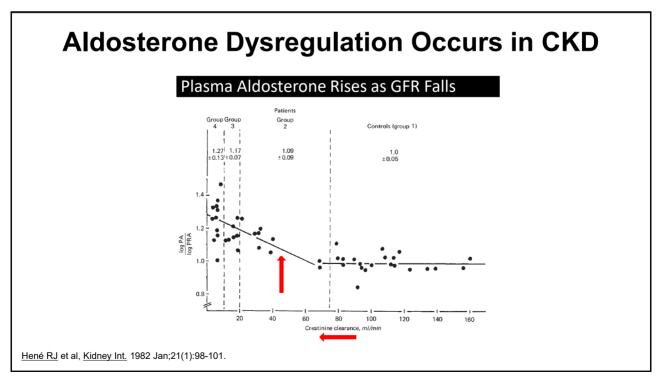


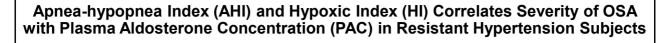

Must have high urine sodium ≥190 mmol/24 hrs and must have suppressed renin activity

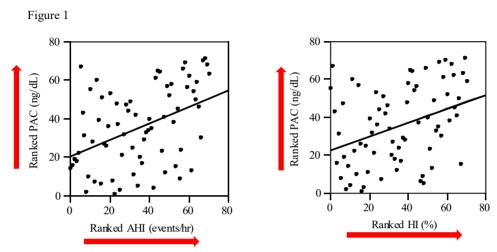

Conclusions:

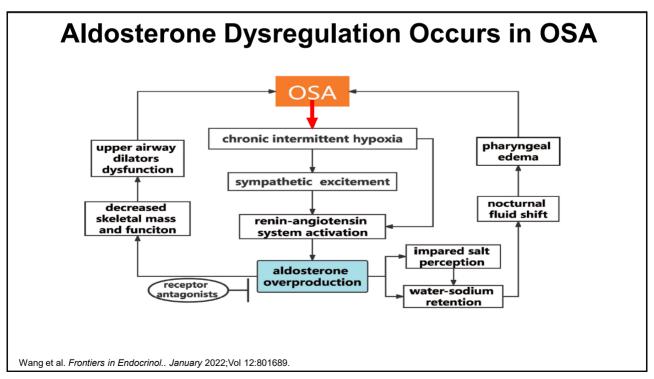

- There is a spectrum of renin-independent aldosterone production that occurs in "healthy" untreated normotensives and increases with the severity of hypertension.
- This suggests aldosterone dysregulation with suppressed renin plays a role in untreated primary "essential" hypertension to the more often recognized patient with treatment-resistant hypertension.
- Perhaps mineralocorticoid-receptor-antagonists should be used more often, and perhaps earlier, in treatment of hypertension. (They were FDA approved in 1960)
- The role of aldosterone synthase inhibitors awaits further evaluation in the treatment of these patients.

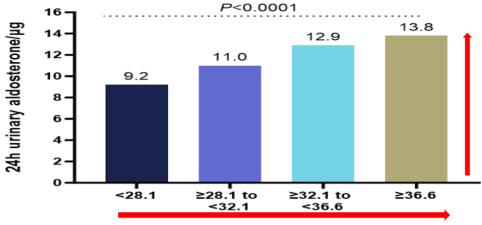

Adapted from Table 2 Lower Panel in Brown JM, et.al. Annals Int Med. 2020;173(1):10-20.











Pratt-Ubunama MN et al. Plasma aldosterone is related to severity of OSA in subjects with Resistant Hypertension *Chest* 2007; 131: 453-458.

Body Mass Index

Fig 1 D. Dudenbostel T. et al. *Hypertension*. 2016;68(4):995-1003. Acelajado MC et al. *Circ Res*. 2019;14:1061-1070.

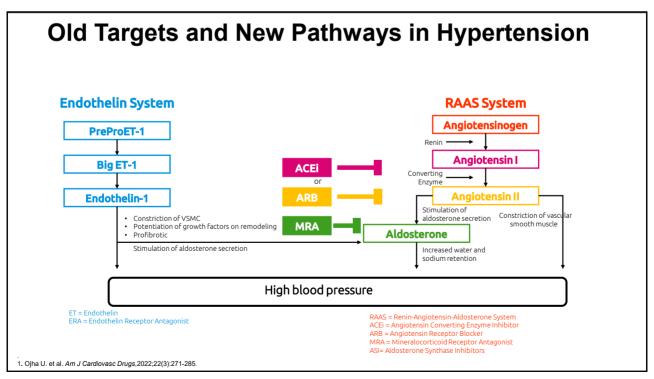
49

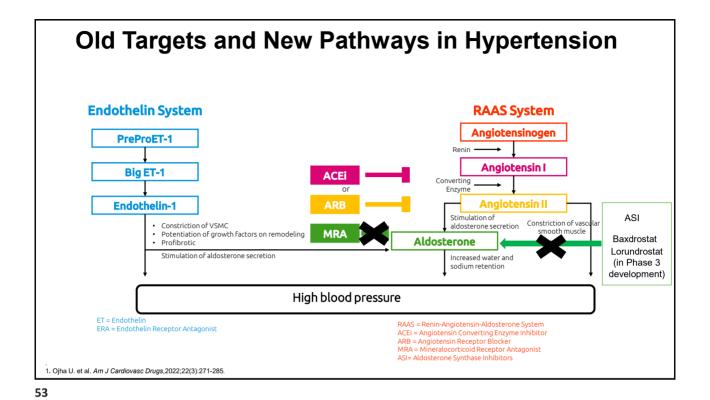
Today's Objectives

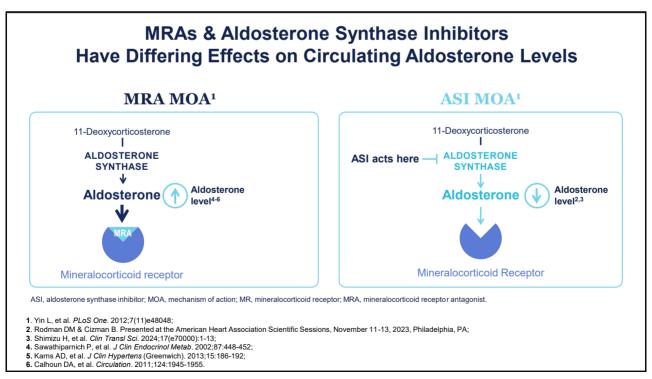
Contrast the Mineralocorticoid Receptor Antagonists (MRAs) with the Aldosterone Synthase Inhibitors (ASIs), both of which may play a larger role in the future treatment of aldosterone dysregulation and hypertension.

MR Antagonists and Aldosterone Synthase Inhibitors (ASI)

Steroidal MRA
Spironolactone
Eplerenone

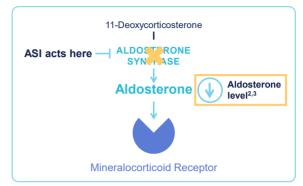

Non-steroidal MRA
Finerenone
Ocedurenone


Aldosterone Synthase Inhibitors (ASI)


Baxdrostat

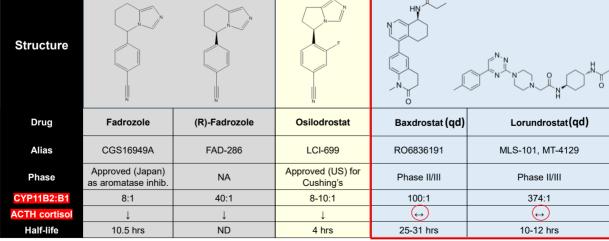
Lorundrostat

BI 690517 (Vicadrostat)



ALDOSTERONE SYNTHASE Aldosterone level4-6 MIRA Mineralocorticoid receptor

ASI MOA¹


ASI, aldosterone synthase inhibitor; MOA, mechanism of action; MR, mineralocorticoid receptor; MRA, mineralocorticoid receptor antagonist.

- 1. Yin L, et al. PLoS One. 2012;7(11)e48048;
- 2. Rodman DM & Cizman B. Presented at the American Heart Association Scientific Sessions, November 11-13, 2023, Philadelphia, PA;
- 3. Shimizu H, et al. Clin Transl Sci. 2024;17(e70000):1-13;
- 4. Sawathiparnich P, et al. J Clin Endocrinol Metab. 2002;87:448-452;
- 5. Karns AD, et al. *J Clin Hypertens* (Greenwich). 2013;15:186-192;
- 6. Calhoun DA, et al. Circulation. 2011;124:1945-1955

55

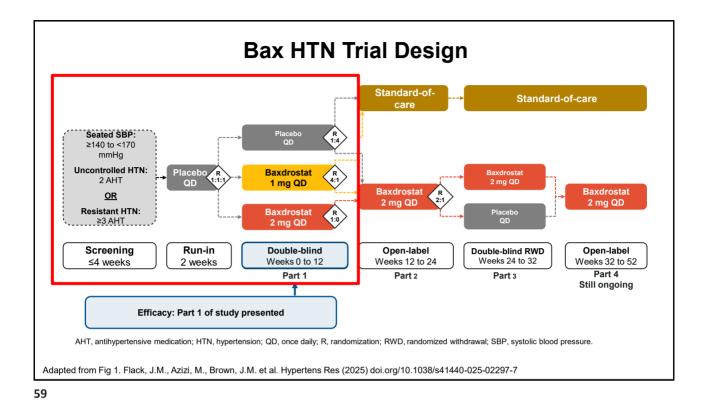
Aldosterone Synthase CYP 11B2 Shares 93% Sequence Identity to CYP11B1 (Cortisol Synthesis)

CYP11B2:B1 calculated IC₅₀B1/IC₅₀B2

ClinicalTrials.gov ID	Phase	Study Name	Projected Enrollment (n)	Background Therapy	Comparators	Primary Outcome	Estimate Completion (ClinicalTrials.gov)
NCT06034743 ^[1]	Phase 3	BaxHTN	720	Stable regimen of 2 or more BP agents, one of which is a diuretic	Placebo 1 mg 2 mg	Change from baseline in seated SBP at week 12	2025-10-13
NCT06344104 ^[2]	Phase 3	BaxAsia	300	Stable regimen of 2 or more BP agents, one of which is a diuretic	Placebo 1 mg 2 mg	Change from baseline in seated SBP at week 12	2026-05-20
NCT06168409 ^[3]	Phase 3	Bax24	212	Stable regimen of 3 or more BP agents, one of which is a diuretic	Placebo 2 mg	Change from baseline in ambulatory 24- h average SBP	2025-04-25
NCT06268873 ^[4]	Phase 3	-	2500	Dapagliflozin ACE or ARB (eGFR 30-90) (UACR 200-5000)	Placebo 2 mg	Change from baseline in eGFR to post- treatment	2027-12-10

- ClinicalTrials.gov. NCT06034743. Accessed March 30, 2025;
- ClinicalTrials.gov. NCT06344104. Accessed March 30, 2025; ClinicalTrials.gov/NCT06168409. Accessed March 30, 2025; ClinicalTrials.gov/NCT06168409. Accessed March 30, 2025. ClinicalTrials.gov. NCT06268873. Accessed March 30, 2025.

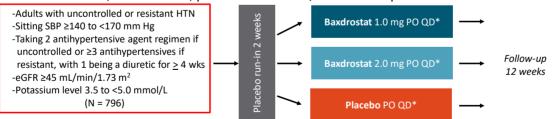
The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Efficacy and Safety of Baxdrostat in Uncontrolled and Resistant Hypertension

John M. Flack, M.D., Michel Azizi, M.D., Jenifer M. Brown, M.D., 4 Jamie P. Dwyer, M.D., 5 Jakub Fronczek, M.D., 6 Erika S.W. Jones, M.D., 7 Daniel S. Olsson, M.D., 8 Shira Perl, M.D., 9 Hirotaka Shibata, M.D., Ph.D., 10 Ji-Guang Wang, M.D., 11 Ulrica Wilderäng, Ph.D., 8 Janet Wittes, Ph.D., 12 and Bryan Williams, M.D.,13 for the BaxHTN Investigators*

ABSTRACT


Flack J. et al. N Engl. J. HTN Aug 30 2025 DOI: 10.1056/NEJMoa2507109.

BaxHTN: Baxdrostat in Patients with Uncontrolled or Resistant HTN

Multicenter, double-blind, placebo-controlled, randomized phase III trial

*Patients to be treated in double-blind period for 12 wk, followed by a rerandomization to treatment arms for 12-wk open-label period, an 8-wk withdrawal period randomized to baxdrostat 2.0 mg or placebo, and then a final 20-wk open-label period.

- Co-primary endpoints: change in seated SBP for both baxdrostat arms at 12 wk
- Key secondary endpoints: change in seated SBP for baxdrostat 2.0 mg at 32 wk; change in seated SBP, seated DBP, patients who achieved seated SBP <130 mm Hg for both baxdrostat arms; and safety

Flack J. et al. N Engl. J. HTN Aug 30 2025 DOI: 10.1056/NEJMoa2507109.

Bax HTN: Baseline Participant Characteristics

794 participants

27% uncontrolled HTN 73% resistant HTN

- Participants were 62% male and 63% White
 - 26% Asian: 7% Black
- Mean (SD) age was 61 (12) years
- · Participants were from:
- The Americas (27%)
 - Europe (43%)
 - Asia Pacific, Middle East, and Africa (30%)

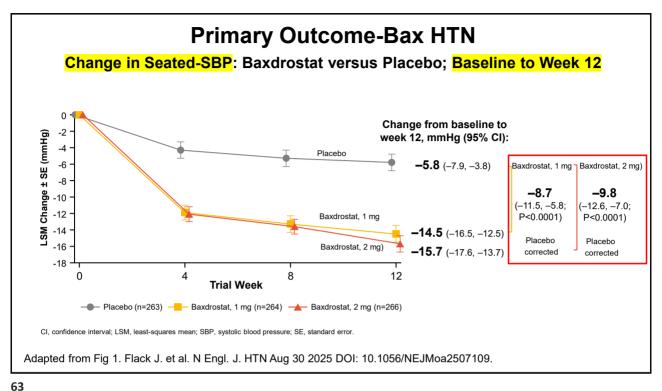
Characteristic	Placebo (n=264)	Baxdrostat, 1 mg (n=264)	Baxdrostat, 2 mg (n=266)
Age, mean ± SD, yrs	61.9 ± 11.6	59.8 ± 11.8	61.8 ± 11.7
Male sex, n (%)	162 (61.4)	169 (64.0)	163 (61.3)
Race, n (%)*			
White	167 (63.3)	165 (62.5)	168 (63.2)
Black	15 (5.7)	23 (8.7)	21 (7.9)
Asian	72 (27.3)	65 (24.6)	72 (27.1)
Native Hawaiian or Pacific Islander	1 (0.4)	1 (0.4)	0 (0.0)
Other	9 (3.4)	10 (3.8)	5 (1.9)

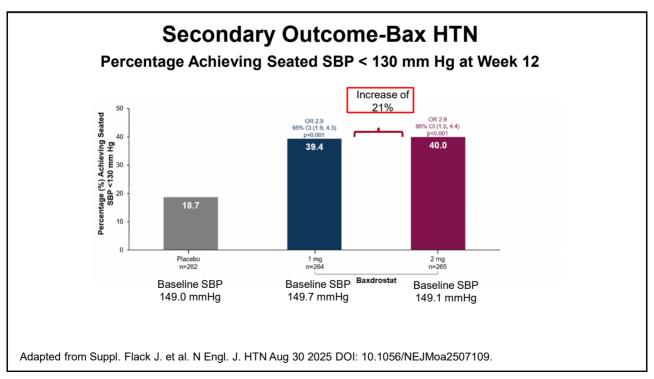
HTN, hypertension; SD, standard deviation.

Adapted from Table 1. Flack J. et al. N Engl. J. HTN Aug 30 2025 DOI: 10.1056/NEJMoa2507109.

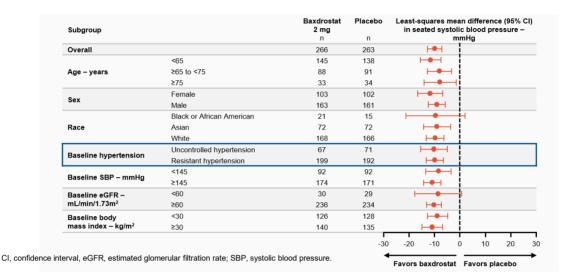
61

Baseline Participant Characteristics (Con't)-Bax HTN


- Clinical characteristics at baseline were similar across treatment arms
- Baseline BP: 149/87 mmHq
- Median number of background AHT medications: 3 (for each treatment group)
 - Almost all on a diuretic (99.6%)
 - 90% on an ACEi or ARB
 - 70% on a calcium channel blocker
 - 34% on a beta blocker
- 52% had obesity, 38% had diabetes
- Baseline potassium: 4.2 mmol/L
- Baseline eGFR: 85.0 mL/min/1.73m²


Characteristic	Placebo (n=264)	Baxdrostat, 1 mg (n=264)	Baxdrostat, 2 mg (n=266)
Seated BP, mmHg* Systolic, mean ± SD Diastolic, mean ± SD	149.0 ± 8.7 85.8 ± 10.5	149.7 ± 10.1 88.0 ± 10.5	149.1 ± 9.1 85.8 ± 10.5
eGFR, mL/min/1.73m² Mean <60, n (%)	84.1 ± 18.0 29 (11.0)	86.6 ± 18.5 27 (10.2)	84.3 ± 17.9 30 (11.3)
Serum sodium, mmol/L Mean ± SD	139.6 ± 2.5	139.9 ± 2.6	139.8 ± 2.5
Serum potassium, mmol/L Mean ± SD	4.2 ± 0.5	4.2 ± 0.4	4.2 ± 0.4
Serum aldosterone, ng/dL [†] Median (IQR)	7.5 (4.2,10.3)	7.9 (4.7, 10.8)	7.2 (4.5, 10.9)
PRA, ng/mL/h‡ Median (IQR)	1.4 (0.6, 4.0)	1.8 (0.7, 4.7)	1.5 (0.6, 5.0)

*n=1 placebo had a missing SBP value at baseline; *placebo: n=224; baxdrostat 1 mg: n=228; baxdrostat 2 mg: n=227; *placebo: n=178; baxdrostat 1 mg: n=197; baxdrostat 2 mg: n=179. ACEi, angiotensin-converting enzyme inhibitor; AHT, antihypertensive treatments; ARB angiotensin-receptor blocker; BP, blood pressure; eGFR, estimated glomerular filtration rate; IQR, interquartile range; PRA, plasma renin activity; SD, standard deviation.


Adapted from Table 1. Flack J. et al. N Engl. J. HTN Aug 30 2025 DOI: 10.1056/NEJMoa2507109.

^{*}Reported by the participant

Changes in Seated SBP at Week 12 Were Consistent Across All Pre-specified Subgroups with Baxdrostat 2 mg vs Placebo

Adapted from Fig 2. Flack J. et al. N Engl. J. HTN Aug 30 2025 DOI: 10.1056/NEJMoa2507109.

65

Adverse Events During the 12-Week Double Blind Treatment Period: Bax HTN

•	AEs	were	mostly	mild
---	-----	------	--------	------

· One death in the placebo group

No reports of adrenal insufficiency

 Most common AEs – numerically higher for baxdrostat versus placebo:

- Hyperkalemia

Hyponatremia

Hypotension

- Muscle spasms

- Dizziness

There were low rates of:

 Confirmed serum potassium >6.0 mmol/L

 Hyperkalemia leading to discontinuation

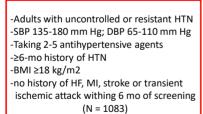
Event, n (%)	Placebo (N=264)	Baxdrostat, 1 mg (N=264)	Baxdrostat, 2 mg (N=266)
Any adverse event	109 (41.3)	125 (47.3)	119 (44.7)
Moderate/severe	23 (8.7)	27 (10.2)	37 (13.9)
Severe	5 (1.9)	3 (1.1)	7 (2.6)
Any adverse event leading to discontinuation	5 (1.9)	7 (2.7)	12 (4.5)
Hyperkalemia leading to discontinuation	0 (0.0)	2 (0.8)	<mark>4 (1.5)</mark>
Any serious adverse event*	7 (2.7)	5 (1.9)	9 (3.4)
Death	1 (0.4)	0 (0.0)	0 (0.0)
Adverse event of special interest [†]			
Hyperkalemia	0 (0.0)	7 (2.7)	21 (7.9)
Hyponatremia	1 (0.4)	2 (0.8)	6 (2.3)
Hypotension	2 (0.8)	5 (1.9)	6 (2.3)
Serum potassium – mmol/L			
>5.5 mmol/L	1/260 (0.4)	16/262 (6.1)	29/261 (11.1)
>6.0 mmol/L	1/262 (0.4)	6/262 (2.3)	8/263 (3.0)
Confirmed >6.0 mmol/L‡	0/262 (0.0)	3/262 (1.1)	3/263 (1.1)

*One case of hyperkalaemia (baxdrostat, 1 mg) and two cases of hyponatremia (baxdrostat, 1 mg and 2 mg) were deemed by investigators to be possibly related to study drug. †Elevated potassium levels, low sodium levels, and low blood pressure were adverse events of special interest if they required clinical intervention. †Central laboratory measurement >6.0 mmol/L confirmed with a local laboratory potassium measurement from the same day. AE, adverse event.

Adapted from Table 3. Flack J. et al. N Engl. J. HTN Aug 30 2025 DOI: 10.1056/NEJMoa2507109.

ClinicalTrials.gov ID	Phase	Study Name	Projected Enrollment (n)	Background Therapy	Comparators	Primary Outcome	Estimate Completion (ClinicalTrials.gov)
NCT06153693 ^[1]	Phase 3	Launch-HTN	1000	Stable regimen of 2- 5 BP agents	Placebo 50 mg 50-100 mg	Change from baseline in systolic AOBP at week 6	Recently Published in JAMA
NCT05769608 ^[2]	Phase 2	ADVANCE- HTN	261	Olmesartan 40 mg Indapamide 2.5 mg +/- Amlodipine 10 mg	Placebo 50 mg 50-100 mg	Change from baseline in ambulatory 24-h average SBP at week 12	Presented March 29, 2025 ACC Scientific Sessions
NCT06150924 ^[3]	Phase 2	Explore-CKD	60	Dapagliflozin or pt's regularly prescribed SGLT2i, ACE, or ARB	Placebo 25 mg	Change from baseline in in systolic AOBP at week 4	2025

AOPB, automated office BP.

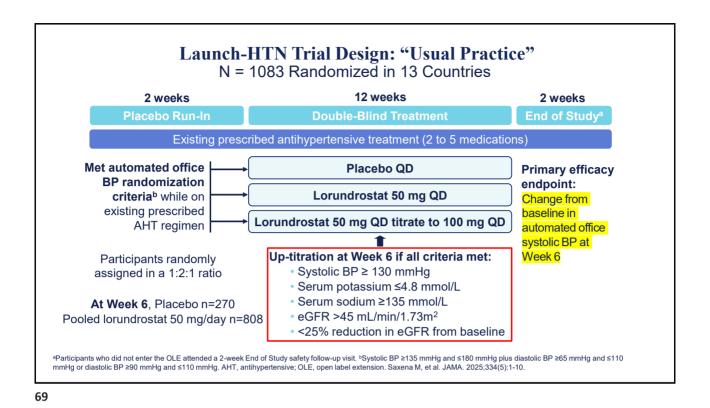

- 1. ClinicalTrials.gov. NCT06153693. Accessed March 30, 2025;
- 2. ClinicalTrials.gov. NCT05769608. Accessed March 30, 2025; 3. ClinicalTrials.gov. NCT06150924. Accessed March 30, 2025.

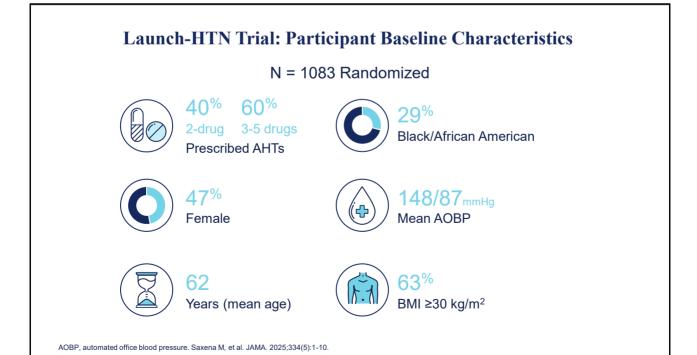

67

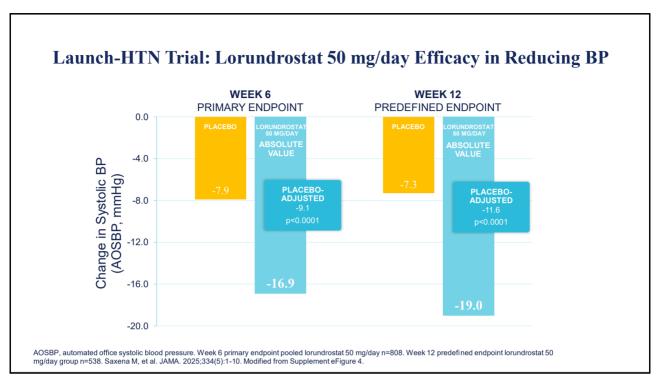
Launch-HTN:

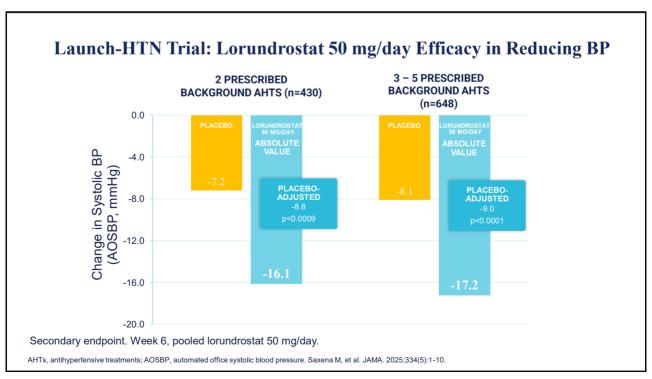
Lorundrostat in Patients with Uncontrolled or Treatment-Resistant HTN

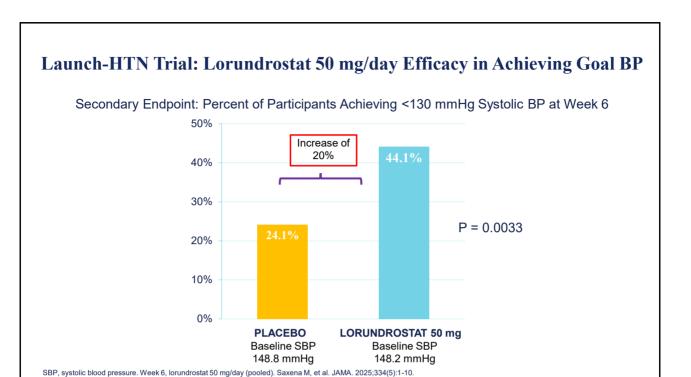
Multicenter, double-blind, placebo-controlled, randomized phase III trial in 13 countries

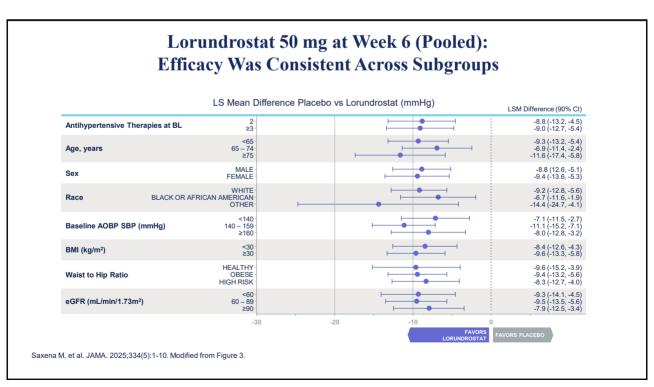





*Those who met prespecified criteria (SBP≥130 mm Hg, eGFR >45 mL/min/1.73 m², potassium level ≤4.8 mmol/L, and eGFR reduction of <25%) at Wk 6 were given lorundrostat 100 mg; those who did not meet this criteria continued lorundrostat 50 mg.


- Primary endpoint: change in office SBP in lorundrostat 50 mg arm vs placebo at Wk 6
- Key secondary endpoints: patients with office SBP <130 m Hg in lorundrostat 50 mg vs placebo at Wk 6, change in office SBP in participants taking 2 or ≥3 antihypertensive agents at Wk 6, safety


NCT06153693. Saxena. JAMA. 2025;334:409.



Launch-HTN Trial Safety: Serum Potassium

Potassium at Study Visit Repeat Test*

			•		
SERUM POTASSIUM (mmol/L)		PLACEBO (N=270)	LORUNDROSTAT 50 mg/day (N=538)		
≤5.5		267 (98.9)	504 (93.7)		
	>5.5	3 (1.1)	34 (6.3)		
	>6.0	1 (0.4)	3 (0.6)		
	>6.5	0 (0.0)	0 (0.0)		

- In the lorundrostat 50 mg/day group:
 - An increase in serum potassium typically occurred within 2 weeks and then stabilized
 - Incidence of confirmed serum potassium >6.0 mmol/L was low (0.6%)

*Includes repeat blood draws within 48-72 hours when participant is in double-blind treatment period and continues to take study medication.

Saxena M, et al. JAMA. 2025;334(5):1-10 and Supplement eFigure 5.

75

Summary on Aldosterone: The Forgotten Hormone in HTN

- 1. Think about Aldosteronism in all patients with HTN but especially in certain phenotypes with hypertension.
- Dysregulated aldosterone can occur in the normotensive population but more commonly occurs in stage I and stage II hypertension, and most commonly in treatment-resistant hypertension.
- 3. Primary aldosteronism (PA) is a common form of secondary hypertension and is associated with CV and renal target organ damage and a mortality that is at least 3-fold greater than for primary essential hypertension, likely due to the direct toxic actions of unrecognized aldosterone.
- 4. At present, Baxdrostat and Lorundrostat seem to have more in common with each other than difference from one another.
- 5. In the future, with additional favorable research with ASI's, it is anticipated that aldosterone dysregulation in all its forms will be more often addressed and more effectively treated with either MRAs or ASIs.