Managing LDL-C and Lp(a): An Update

Jan N. Basile, MD, FACP, FASH, FAHA

Professor of Medicine Division of Cardiology Medical University of South Carolina Ralph H Johnson VA Medical Center Previous Vice-Chair of Clinical Programs AHA Council of Hypertension US National Leader SURPASS-CVOT Charleston, SC basilejn@musc.edu

CONTINUING EDUCATION COMPANY

Disclosure

Consultant: Alnylam (Hypertension); Blue Earth Diagnostics; Corcept; Eli Lilly (SURPASS-CVOT); Idorsia; Medtronic; Mineralys; Novo Nordisk; ReCor (Renal Denervation); ReCor-PI (Renal Denervation); UpToDate (Hypertension Section)

Research Grant: Ablative Solutions (Target BP I); Corcept; Eli Lilly (TRIUMPH); ReCor (Radiance I and II); Sonivie – THRIVE Study

CONTINUING EDUCATION COMPANY

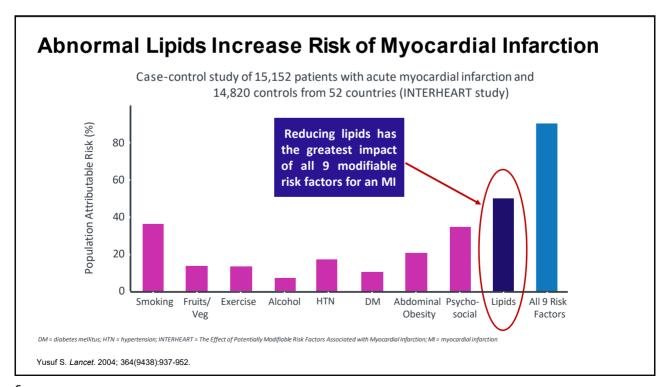
Objectives

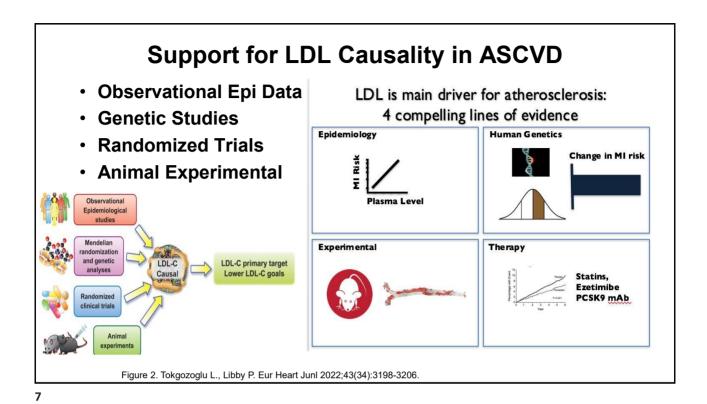
- 1) Review the most recent cholesterol updated guideline on LDL-C thresholds for treatment including the "newest" 2022 LDL-C target for the very-high risk patient.
- 2) Review currently available "newer" non-statin cholesterollowering therapies and their roles for LDL-C Reduction.
- 3) Learn When and Why You Should Measure Lp(a) understanding its relationship to CV Disease.
- 4) Review what you can currently do for Lp(a) elevation and the **Clinical Trials Currently in Progress.**

ARS Question 1

- 62-year-old female with a hx of CAD and a stent placed 1 year ago is referred for lipid management.
- She has a hx of Type II Diabetes, Hypertension, and Obesity.
- Current medications include simvastatin 20 mg, benazepril 20 mg/amlodipine 5 mg qam (fixed-dose combination pill), aspirin 81 mg, metformin 1000 mg bid, and semaglutide 2.4 mg sq weekly.
- Her current BMI is down to 30 and her BP is 118/68 mm Hg.
- Recent labs: Total Chol 150, HDL 40, TG 140, Calculated LDL-82, non-HDL-C 110, and A1C 6.2%.

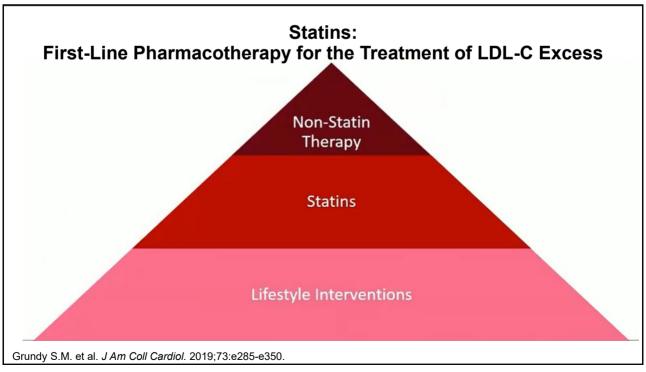
ARS Question 1 Being on Simvastatin 20 mg, the Best Choice to Manage Her LDL-C is:


- A. Add Niacin 500 mg tid
- B. Add fenofibrate 160 mg qd
- C. Add ezetimibe 10 mg qd
- D. Add evolocumab 420 mg sq monthly
- E. Change simvastatin 20 mg to Atorvastatin 40 mg qd


Total Chol 150, HDL 40, TG 140, Calculated LDL-82, non-HDL-C 110, and A1C 6.2%.

CONTINUING EDUCATION COMPANY

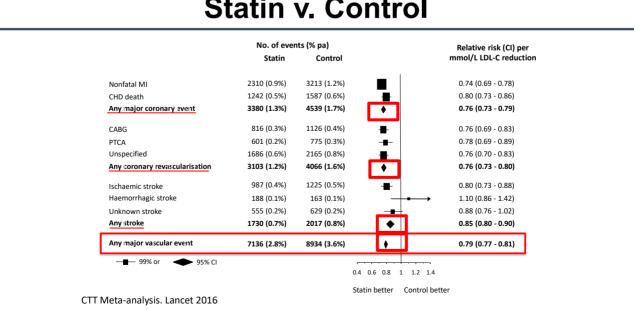
5

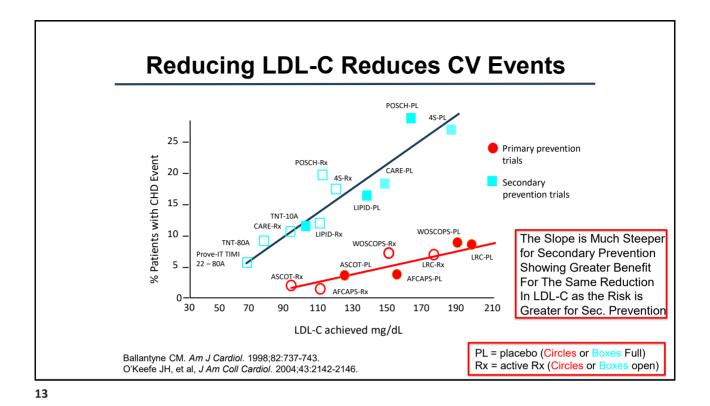


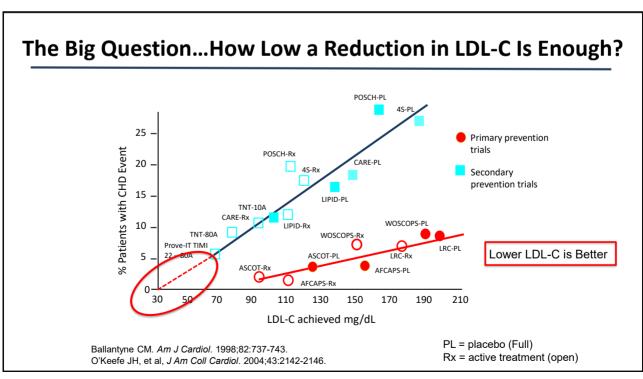
Assessing Cholesterol-Years for ASCVD Risk Prediction Moderate hypercholesterolemia Modest hypercholesterolemia hypercholesterolemia starting in teens from birth (FH) (genetics, lifestyle) from adulthood (lifestyle) Cumulative Cholesterol-Years Threshold for onset of ASCVD Lifelong low LDL-C Lower for Longer is (genetics, excellent lifestyle, initiation of **Better** LDL-lowering therapy at an early age) Age⁶⁰. Cumulative prior exposure to elevated LDL-C is a critical driver of ASCVD Risk 8 Shapiro MD, Bhatt DL, J Am Coll Cardiol, 2020;76(13):1517-1520

It Starts with Statins When Reducing LDL-Cholesterol After Lifestyle Modification

9

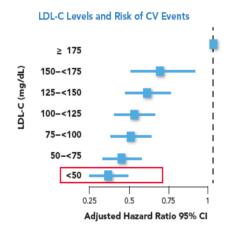

CTT Collaborators Meta-analysis Results of 90,056 Participants in 14 Randomized Trials of Statins per mmol/L Reduction in LDL-C

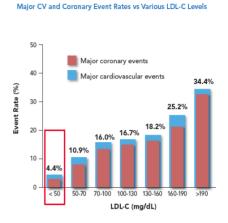

- 12 % reduction in all-cause mortality (p<0.0001)
- 19% reduction in coronary mortality (p<0.0001)
- 23% reduction in MI or coronary death (p<0.0001)
- 24% reduction in coronary revascularization (p<0.0001)
- 17% reduction in fatal/nonfatal stroke (p<0.0001)
- 21% reduction in combination of above vascular events (p<0.0001)
- · No change in non-CVD mortality or cancer incidence
- Benefit of statins related to absolute reductions in LDL-C
- Statins safely reduce MACE 21% per every 1 mmol/L reduction in LDL-C (39mg/dL), regardless of baseline lipids, risk, age, gender


Lancet 2005;366:1267-78.

11

Reducing LDL-C Reduces CV Events Statin v. Control





Very Low Levels of Atherogenic Lipoproteins and the Risk of Cardiovascular Events

A Meta-Analysis of Statin Trials

Boekholdt SM, et al. J Am Coll Cardiol, 2014:64:485-94

15

Monitoring of Therapeutic Response Is Critical **And Often Not Done**

- After therapy initiation
- With dose titration

Recheck lipids in 4-12 weeks

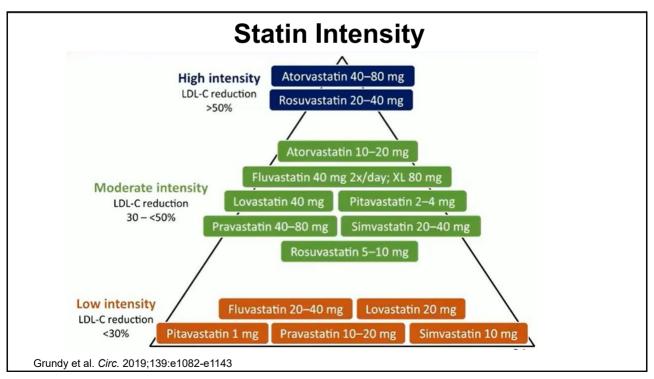
- During long-term therapy
 - Are intensity of therapy and LDL-C concentration still appropriate for patient's ASCVD risk?
 - Is patient adherent to therapy?
 - If so, recheck every 3-12 months as needed

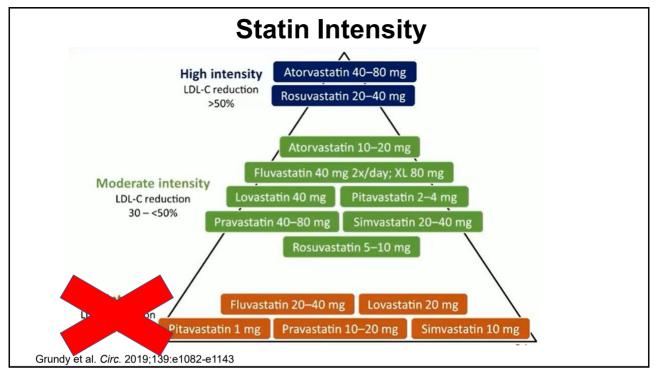
Grundy SM, et al. J Am Coll Cardiol. 2018 Nov 8. pii: S0735-1097(18)39034-X.; Grundy SM et al. Circulation. 2018

With Using Statins, Recognize the Importance of:

- 1) Intensity of Statin Used
- 2) Amount and Length of LDL-C Reduction Achieved
- 3) Use and Adherence to Statin Achieved
 Less adherence even on a high-intensity statin is
 associated with increased mortality!

17

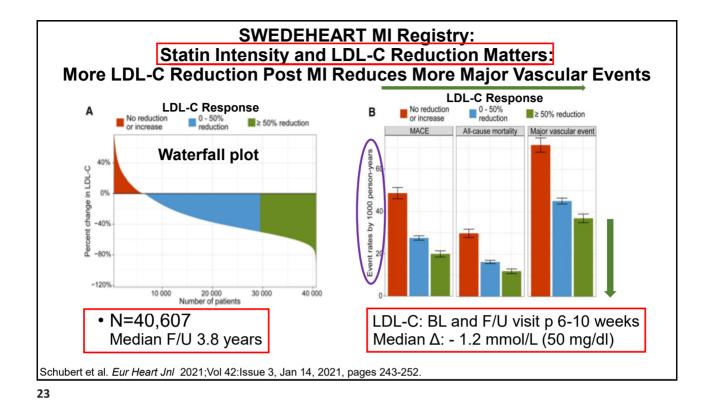

With Using Statins, Recognize the Importance of:

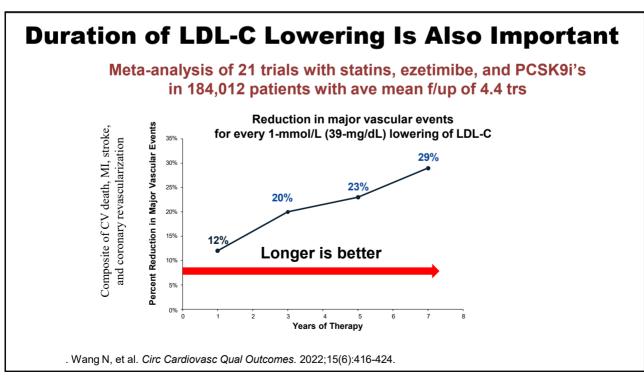

1) Intensity of Statin Used

Statin Intensity High Intensity Moderate Intensity Lowers LDL-C on Lowers LDL-C on average by >50% average by 30% to <50% Statins Atorvastatin 40-80 Atorvastatin 10-20 mg · Intensity defined by % LDL-C lowering Rosuvastatin 20-40 Aim for ≥50% LDL-C lowering in high-risk patients Rosuvastatin 5-10 mg mg and very-high risk individuals Simvastatin 20-40 mg Aim for 30 to <50% LDL-C lowering in moderate-risk Pravastatin 40-80 mg patients Notice I have not included Lovastatin 40 mg low intensity statins as they are no longer recommended Fluvastatin XL 80 mg Fluvastatin 40 mg BID Pitavastatin 2-4 mg

Grundy et al. Circ 2019;139:e1082-e1143

19

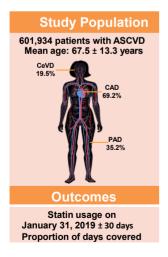


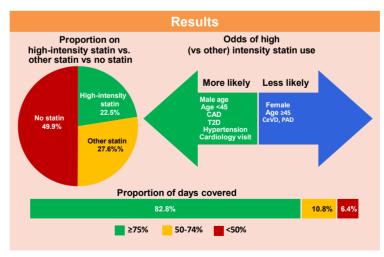


21

With Using Statins, Recognize the Importance of:

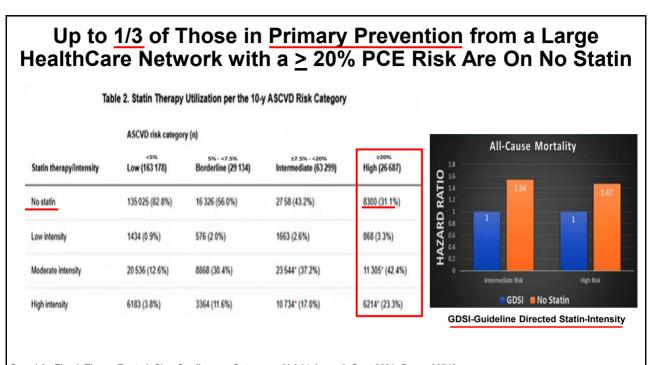
- 1) Intensity of Statin Used
- 2) Amount and Length of LDL-C Reduction Achieved

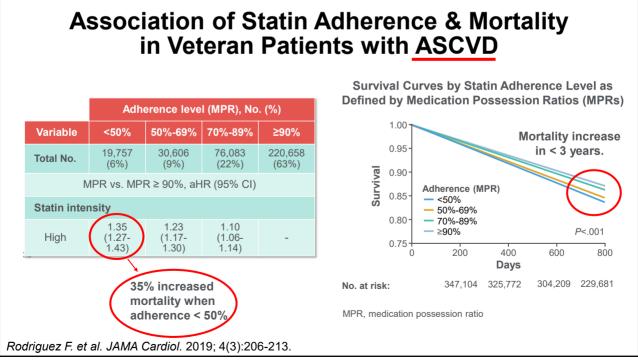

With Using Statins, Recognize the Importance of:


3) Use and Adherence to Statin Achieved

Less use and adherence even on a highintensity statin is associated with increased mortality!

25


Up to One-Half of Patients with Underlying ASCVD Are Not Taking a Statin


Abbreviations: CAD=coronary artery disease; CeVD=cerebrovascular disease; PAD=peripheral artery disease; T2DM=type 2 diabetes mellitus

Nelson AJ, et al. J Am Coll Cardiol. May 2022;79 (18):1802-

Saeed A., Zhu J. Thoma F., et al. Circ. Cardiovasc. Outcomes. Vol 14, Issue 9, Sept 2021; Page e00748.

27

So Intensity and Use (Adherence) of Statins Makes a Difference

29

What About Statin Side Effects

Reported Patient Complaints with Statin Therapy

Most Common: Myalgias (5-30% of patients but only 5-10% in clinical trials)

 Skeletal muscle-related symptoms that can be characterized by soreness, aches, cramps, fatigue, and/or weakness, usually bilateral without creatine kinase elevation

Less Common: Myopathy (~1 in 10,000 patients per year)

 Characterized by Unexplained muscle pain or weakness, accompanied by creatine kinase concentration > 10 times the upper limit of normal."

Rare: Rhabdomyolysis (~1 in 100,000 patients per year)

• Characterized by "creatine kinase concentration typically >40 times the upper limit of normal, which can cause myoglobinuria and acute renal failure.

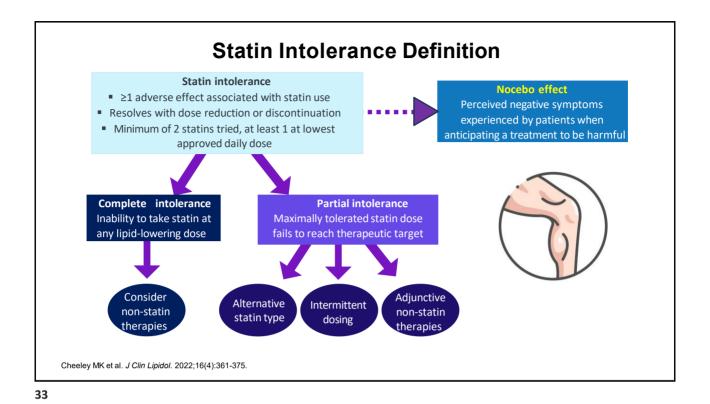
Other Signs or Symptoms

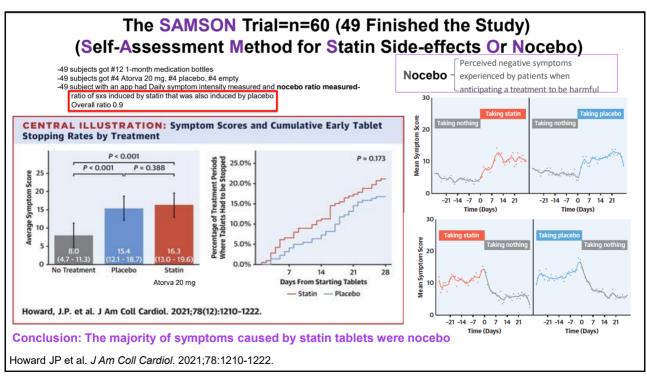
- Transaminase elevation (very rare) and worsening glycemia (more likely with high-potency statins).
- There is no evidence that statins affect cognition.

Journal of Clinical Lipidology (2022) 16, 361-375

31

2018 AHA/ACC Cholesterol Guidelines: No Routine CPK Monitoring; But Check in Those with Suspected Myositis


III: No Benefit C-LD


In patients treated with statins, routine measurements of creatine kinase and transaminase levels are not useful.

l C-LD

In patients treated with statins, it is recommended to measure creatine kinase levels in individuals with severe statin-associated muscle symptoms, objective muscle weakness, and to measure live transaminases (aspartate aminotransferase, alanine aminotransferase) as well as total bilirubin and alkaline phosphatase (hepatic panel) if there are symptoms suggesting hepatotoxicity.

Adapted from Grundy SM, Stone NJ et al. 2018 AHA-ACC-Multi-Society Cholesterol Guidelines

"Nocebo" Effect"

- For patients with statin-intolerance, it is reasonable to consider some proportion of statin-associated symptoms to the nocebo effect; however, this does not make such symptoms less clinically relevant.
- Regardless of the reason that patients will not take statins, continued ASCVD risk related to elevated atherogenic lipoproteins should be addressed with other therapies.

Cheeley MK et al. Journal of Clinical Lipidology. 2022;16, 361-375.

35

Statin Roulette

Consider a Different Statin That Differs in Pharmacokinetics

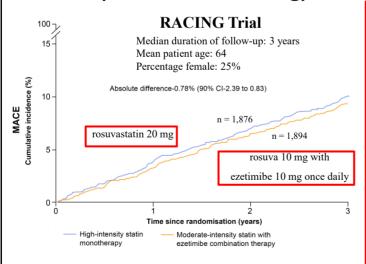
Adapted from Grundy SM, Stone NJ et al. 2018 AHA-ACC-Multi-Society Cholesterol Guidelines

How to Treat Statin Intolerance

· Non-statin drug treatment:

Ezetimibe, bile acid resins, PCSK9 inhibitors, bempedoic acid

Alternative day dosing:


Once a week (rosuvastatin)
Three times a week (rosuvastatin, atorvastatin)
Every other day
Try all available statins, including
pravastatin, fluvastatin, pitavastatin

- CoQ10 not found to be beneficial in clinical trials
- Vitamin D replacement (if < 15 ng/mL), may be helpful

Lloyd-Jones DM, et al. JACC. 2016;68:92-125.

37

RACING Trial: Moderate Intensity Statin + Ezetimibe (Rosuvastatin 10 + Ezetimibe 10) vs High Intensity Statin (Rosuvastatin 20 mg) in Patients with ASCVD

Adapted from Kim B-K et al. Lancet 2022: 400: 380-90

- Among patients with ASCVD, moderate-intensity statin with ezetimibe combination therapy was non-inferior to high-intensity statin monotherapy for the 3-year composite outcomes
- LDL-C <70 mg/dL at 1, 2, and 3 years were observed in 73%, 75%, and 72% of patients in the combination therapy group, and 55%, 60%, and 58% of patients in the high-intensity statin monotherapy group (all p<0.0001).
- Discontinuation or dose reduction of the study drug by intolerance was observed in 4.8% in combination therapy group and 8.2% with high-intensity statin (p<0.0001).

Take Home Points - Statin Therapy

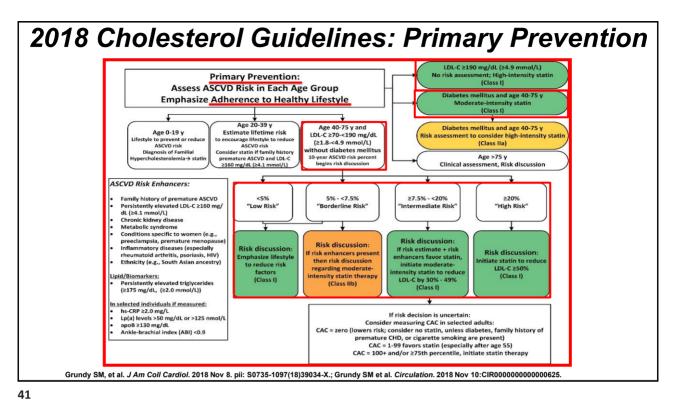
- Statins remain underutilized
- Poor adherence is associated with poor outcomes
- Statin intensity matters
- Monitoring of statin therapy is important
- Statin intolerance may not be what you think it is

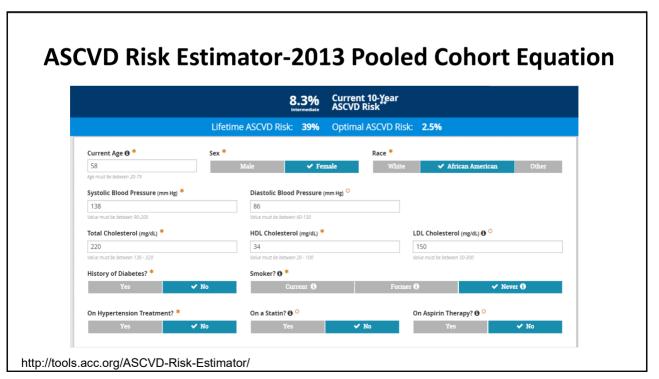
39

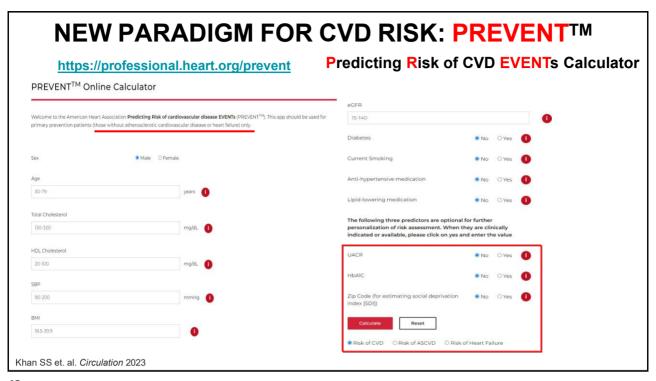
4 Key Groups Warranting LDL-C Lowering Therapy

Across all guidelines, statins remain 1st line pharmacological therapy for LDL-C lowering

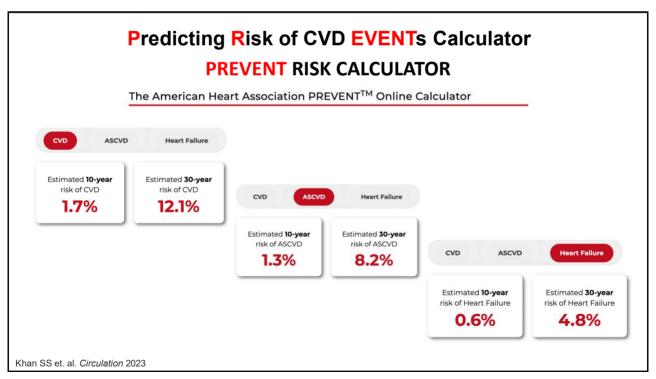
Clinical ASCVD

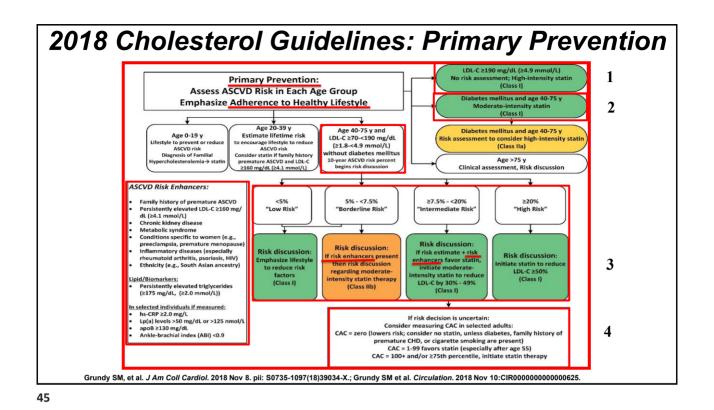

Primary severe hypercholesterolemia (SH) LDL> 190 mg/dl

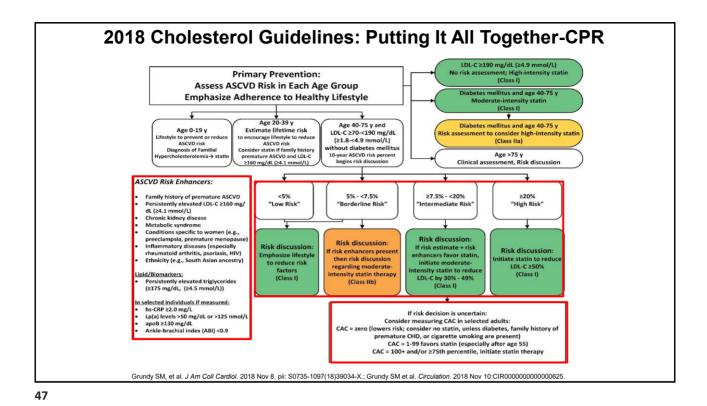

Diabetes mellitus


No ASCVD, SH, or DM

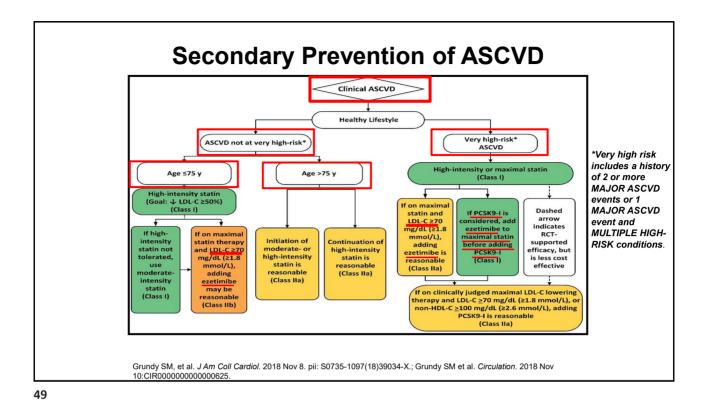
(But at Elevated


Adapted from Grundy. J Am Coll Cardiol. 2019;73:e285.





43



	Using 10-year ASCVD risk estimate plus coronary artery calcium (CAC) score to guide statin therapy				
	Patient's 10-year atherosclerotic cardiovascular disease (ASCVD) risk estimate:	<5%	5-7.5%	>7.5-20%	>20%
n on the	Consulting ASCVD risk estimate alone	Statin not recommended	Consider for statin	Recommend statin	Recommend statin
use /D Risk nate +	Consulting ASCVD risk estimate + CAC				
Score	If CAC score =0	Statin not recommended	Statin not recommended	Statin not recommended	Recommend statin
	If CAC score >0	Statin not recommended	Consider for statin	Recommend statin	Recommend statin
	Does CAC score modify treatment plan?	CAC not effective for this population	CAC can reclassify risk up or down	CAC can reclassify	CAC not effective for this population

2018 Cholesterol Guidelines: Putting It All Together-CPR **Primary Prevention:** Assess ASCVD Risk in Each Age Group Diabetes mellitus and age 40-75 v **Emphasize Adherence to Healthy Lifestyle** (Class I) Age 20-39 v Diabetes mellitus and age 40-75 y
Risk assessment to consider high-intensity statir Age 40-75 v and Age 0-19 y Estimate lifetime risk LDL-C ≥70-<190 mg/dL (≥1.8-<4.9 mmol/L) (Class IIa) without diabetes mellitu Age >75 y essment, Risk discussion 10-year ASCVD risk pero begins risk discussion Clinical asse ≥160 mg/dL (≥4.1 mmol/L) ASCVD Risk Enhancers: <5% ≥20% Family history of premature ASCVD Calculate (PCE) Persistently elevated LDL-C ≥160 mg/ dL (≥4.1 mmol/L) Chronic kidney disease Metabolic syndrome "High Risk" Conditions specific to women (e.g., preeclampsia, premature menopause Inflammatory diseases (especially rheumatoid arthritis, psoriasis, HIV) Ethnicity (e.g., South Asian ancestry) Risk discus ersonalize r statin erate-to reduce Lipid/Biomarkers: (Class I) (Class I) sistently elevated triglycerides (Class IIb) (Class I) (≥175 mg/dL, (≥4.5 mmol/L)) selected individuals if measured: hs-CRP ≥2.0 mg/L Lp(a) levels >50 mg/dL or >125 nmol/L n selected adults apoB ≥130 mg/dL Ankle-brachial index (ABI) <0.9 Reclassit moking are present) especially after age 55) CAC = 100+ and/or ≥75th percentile, initiate statin therapy

Very High-Risk ASCVD Patients* Major ASCVD Events Recent ACS (within the past 12 mo.) History of MI (other than recent ACS event listed above) * <u>></u>2 History of ischemic stroke **MAJOR** Symptomatic peripheral arterial disease (history of claudication with ABI <0.85, or **ASCVD** previous revascularization or amputation) **Events High-Risk Conditions** Age ≥65 y Heterozygous familial hypercholesterolemia History of prior coronary artery bypass surgery or percutaneous coronary intervention * 1 MAJOR outside of the major ASCVD event(s) and Diabetes mellitus MULTIPLE Hypertension **HIGH-RISK** CKD (eGFR 15-59 mL/min/1.73 m²) **CONDITIONS** Persistently elevated LDL-C (LDL-C ≥100 mg/dL [≥2.6 mmol/L]) despite maximally tolerated statin therapy and ezetimibe History of congestive HF *Very high risk includes a history of 2 or more MAJOR ASCVD events or 1 MAJOR ASCVD event and MULTIPLE HIGH-RISK conditions

Differences Between US Cholesterol Guidelines and European Dyslipidemia Guidelines Guidelines 2019 ESC/EAS Guidelines

Characteristic	2018 AHA/ACC Guidelines		2019 ESC/EAS Guidelines	
Risk scoring	10-year risk of CV event		10-year risk of fatal CVD)
LDL-C goals				
Moderate risk	30%-50% reduction from baseline		LDL-C <100 mg/dL	
High risk <u>≥</u>	50% reduction from baseli	<u>ne</u>	LDL-C <70 mg/dL and ≥50 reduction from baseline	_
Very high risk	LDL-C <70 mg/dL and non-HDL-C <100 mg/dL	≥!	LDL-C <55 mg/dL and 50% reduction from baseli	ine
Therapies included	Statins, ezetimibe, PCSK9is	5	Statins, ezetimibe, PCSK9	is
Therapies not discussed	Bempedoic acid, inclisiran, lomitapide, evinacumab	, В	empedoic acid and inclisir are "future therapies"	ran
	·		·	

- 1. Grundy SM et al. J Am Coll Cardiol. 2019;73:e285-e350.
- 2. Mach F et al. Eur Heart J. 2020;41:111-188.

51

Updated Recommendations for LDL-C Lowering

EXPERT CONSENSUS DECISION PATHWAY

August 26th, 2022

2022 ACC Expert Consensus Decision Pathway on the Role of Nonstatin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk

A Report of the American College of Cardiology Solution Set Oversight Committee Endorsed by the National Lipid Association

Writing

Donald M. Lloyd-Jones, MD, FACC, Chair Pamela B. Morris, MD, FACC, Vice Chair

Christie M. Ballantyne, MD, FACC Kim K. Birtcher, PharmD, MS, FACC Ashleigh M. Covington, MA Sondra M. DePalma, DHSc, PA-C, CLS, CHC, AACC Margo B. Minissian, PhD, ACNP, CLS, AACC Carl E. Orringer, MD, FACC

Sidney C. Smith Jr, MD, MACC Ashley Arana Waring, MD, FACC John T. Wilkins, MD, MS

Lloyd-Jones D. et al. J Am Coll Cardiol 2022; 80:1366-1418.

Secondary Prevention % LDL-C Reduction vs LDL-C Target

CV Risk	Example	Target LDL Reduction
Very High	Multiple CV events OR Prior CV event + multiple risks (diabetes, smoking, etc.)	≥ 50% AND < 55 mg/dL
High	Prior CV event, but not very high risk OR 10-year CV risk ≥ 20%	≥ 50% AND < 70 mg/dL

Lloyd-Jones DM et al.J Am Coll Cardiol. 2022;80:1366-1418.

53

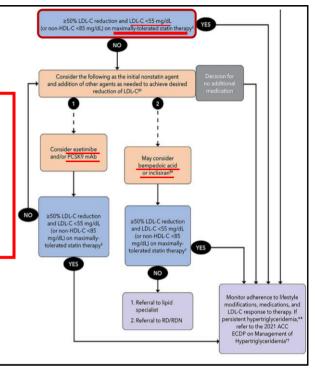
Secondary Prevention % LDL-C Reduction vs LDL-C Target

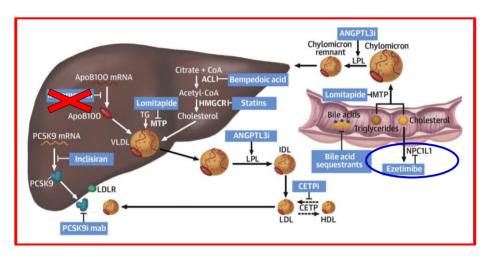
CV Risk	Example	Target LDL Reduction
Very High	Multiple CV events OR Prior CV event + multiple risks (diabetes, smoking, etc.)	≥ 50% AND < 55 mg/dL
High	Prior CV event, but not very high risk OR 10-year CV risk ≥ 20%	≥ 50% AND < 70 mg/dL
Intermediate	10-year CV risk 7.5% to < 20%	≥ 30% AND < 100 mg/dL

J Am Coll Cardiol. 2022;80:1366-1418

ASCVD at Very High Risk for Secondary Prevention

- In view of evidence demonstrating CV outcomes benefits of LDL-C to lower levels, new lower LDL-C threshold of 55 mg/dL for addition of non-statin therapies.
 - IMPROVE-IT treatment group: 54 mg/dL
 - FOURIER/ODYSSEY Outcomes: 30 mg/dL



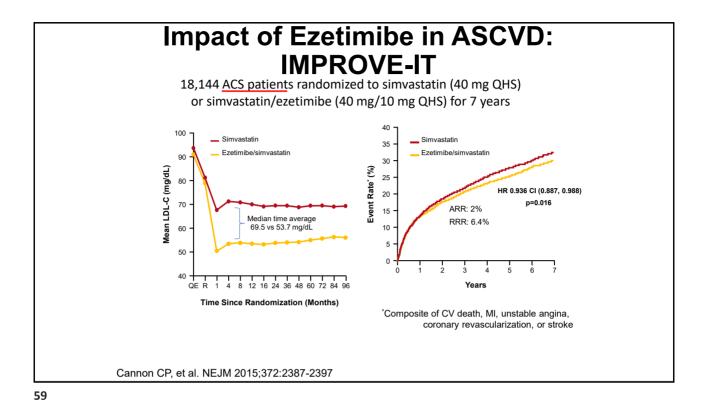

Fig 2a. Jones D.L. et al. J Am Coll Cardiol 2022; 80:1366-1418.

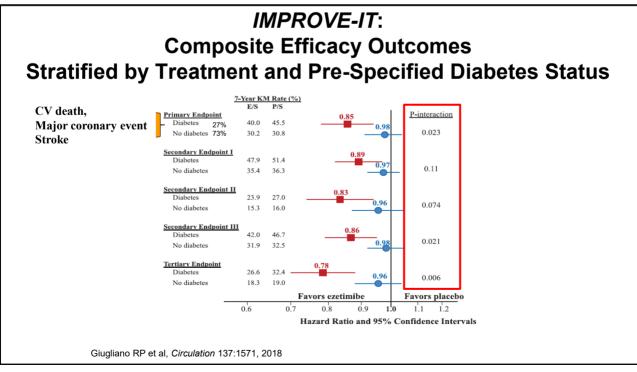
55

Objectives

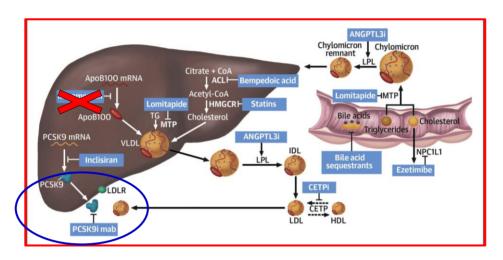
- Review the most recent cholesterol updated guideline on LDL-C thresholds for treatment including the newer 2022 LDL-C target for the very-high risk patient.
- 2) Review currently available "newer" non-statin cholesterol-lowering therapies and their roles for LDL-C Reduction.

Ezetimibe




Nurmohamed, et al. JACC. 77:1564-75, 2021

57


Ezetimibe (Zetia)

- · Cholesterol absorption inhibitor
 - Blocks the Nieman Pick C1 like 1 (NPC1L1) protein in the jejunal brush border
 - Reducing cholesterol absorption which leads to reduced delivery of cholesterol to the liver and subsequent upregulation of LDL receptors
- Indicated as an adjunctive therapy in patients with hypercholesterolemia
- Lowers LDL-C by 18-25%
- Small reductions in CV outcomes, better outcomes in those w diabetes?
- · Side Effects: clinically almost unheard of!
- Dosing: 10mg daily, available as combination pills with other agents (statins, bempedoic acid)
- Cost Conscious (Good Rx \$31.85 for 90-10 mg)-9/13/25

PCSK9 Inhibitors

Nurmohamed, et al. JACC. 77:1564-75, 2021

61

PCSK9 Inhibitors

- Are Monoclonal antibodies that inhibit PCSK9, a protein which normally helps degrade LDL-C receptors on the surface of the liver. With more LDL-C receptors, there is an increased clearance of LDL-C.
- ↓ LDL-C by 40-70%: when used in addition to maximally tolerated statin therapy and in statin-intolerant patients.
- Reduces ASCVD events.
- Indicated as an adjunctive therapy in patients with hypercholesterolemia and ASCVD or FH
- Well tolerated and safe even with very low LDL-C levels
 - Side effects: injection site reactions, rhinitis
- Dosing:
 - Alirocumab (*Praluent*): 75-150 mg SC every 2 weeks
 300 mg SC every 4 weeks
 - Evolocumab (*Repatha*): 140 mg SC every 2 weeks
 420 mg SC every 4 weeks

PCSK9 Monoclonal Antibody Trials: Outcome Trial Characteristics

Design Feature	FOURIER	ODYSSEY Outcomes
Patient Population	Stable ASCVD: MI, stroke, PAD; median 3 years since index event	Post ACS; median 2.6 months since index event
N (% women)	27.564 (25)	18,294 (25)
Mean age (years)	63	58
LDL-C entry criterion	≥ 70 mg/dL	≥ 70 mg/dL
Baseline LDL-C	92 mg/dL	87 mg/dL
High intensity statin	69%	89%
Ezetimibe	5%	3%
PCSK9 dosing	Evolocumab 140 mg Q 2 weeks or 420 mg Q 4 weeks	Alirocumab 75 mg or 150 mg Q 2 weeks; titrated to target LDL-C 25-50 mg/dL
Follow-up	2.2 years	2.8 years (44% ≥3 years)
Primary Endpoint	MACE: CV death, MI, stroke, UA, coronary revasc	MACE: CHD death, MI, ischemic stroke, UA

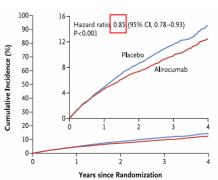
Sabatine M, et al. NEJM 2017

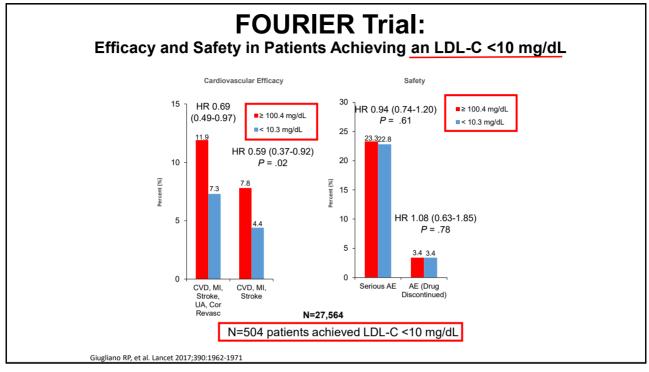
Schwartz G, et al. NEJM 2018

63

PCSK9 Inhibitors – CV Outcome Trials

FOURIER:

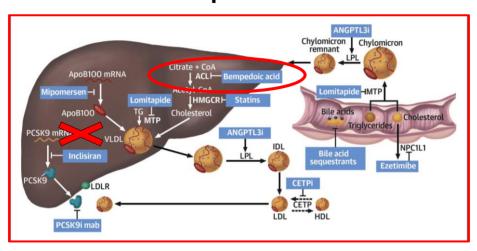

- 27,564 patients with h/o Stable ASCVD and LDL-C ≥70
- LDL-C 92 vs 30 mg/dl with Evolocumab


Sabatine et al. NEJM, 2017.

ODYSSEY OUTCOME:

- 18,924 patients with <u>h/o ACS</u> and LDL-C ≥70
- LDL-C 103 vs 66 mg/dl with Alirocumab

Schwartz et al. NEJM, 2018.

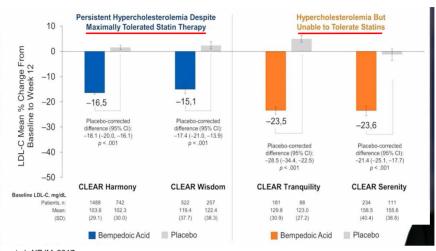


65

PCSK9 Inhibitors: Where Do They Fit In?

- Severe or difficult to treat hypercholesterolemia
- Statin intolerant patients
- Secondary prevention
- Patients with elevated lipoprotein(a)?
- What about cost?-more cost conscious with recent reduction in price, has savings card, still \$\$ without insurance

Bempedoic Acid


Nurmohamed, et al. JACC. 77:1564-75, 2021

67

Bempedoic Acid (BA) (Nexletol)

- Inhibits the Adenosine Citrate Lyase (ACL) enzyme 1-step upstream from HMG-CoA reductase in the cholesterol biosynthesis pathway.
- Not the rate-limiting step in cholesterol synthesis so effects are < statins.
- Indicated as an adjunctive therapy in patients with hypercholesterolemia and ASCVD or FH, both primary and secondary prevention.
- Lowers LDL-C by 16% w statin up to 24% w/o statin and 35% with ezetimibe.
- CV outcome data (CLEAR Outcomes) met its primary endpoint in patients who were statin-intolerant.
- Side effects: ↑ uric acid/gout, tendon rupture (achilles), inc LFTs.
- The specific isozyme (ACSVL1), which converts BA into an active drug, is not present in skeletal muscle, so it should not be associated with myalgia.
- Lowers hs-CRP, but has no effect on glucose (unlike statins).
- Dosing: 180 mg po daily
 - Also available in combination with ezetimibe (Nexlizet 180mg/10 mg)
 - Has savings card but Good Rx price \$231 per month (Publix 9/13/25)

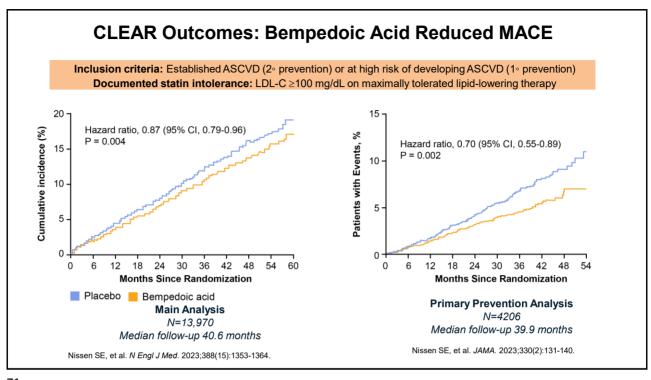
Ray et al, *NEJM*, 2017 Goldberg et al, *JAMA*, 2019 Ballantyne et al, *Atherosclerosis*, 2018 Banach et al. *JAm Heart Assoc*, 2019

69

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients

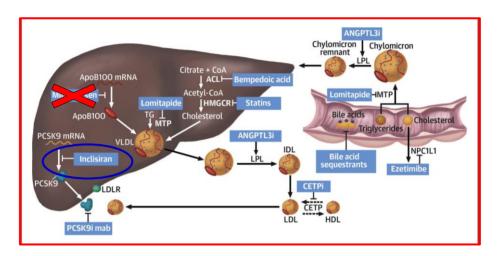

S.E. Nissen, A.M. Lincoff, D. Brennan, K.K. Ray, D. Mason, J.J.P. Kastelein, P.D. Thompson, P. Libby, L. Cho, J. Plutzky, H.E. Bays, P.M. Moriarty, V. Menon, D.E. Grobbee, M.J. Louie, C.-F. Chen, N. Li, L.A. Bloedon, P. Robinson, M. Horner, W.J. Sasiela, J. McCluskey, D. Davey, P. Fajardo-Campos, P. Petrovic, J. Fedacko, W. Zmuda, Y. Lukyanov, and S.J. Nicholls, for the CLEAR Outcomes Investigators*

ABSTRACT

BACKGROUND

Bempedoic acid, an ATP citrate lyase inhibitor, reduces low-density lipoprotein (LDL) cholesterol levels and is associated with a low incidence of muscle-related adverse events: its effects on cardiovascular outcomes remain uncertain.

SE Nissen et al. April 13, 2023 N Engl J Med 2023; 388:1353-1364

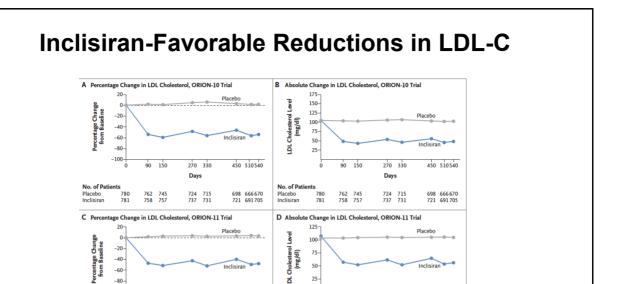

71

CLEAR Outcomes: Select Adverse Events in Total Trial Population

AE, %	Bempedoic Acid (n = 7001)	Placebo (n = 6964)
Serious treatment-emergent AE	25.2	20.8
AE leading to discontinuation	9.9	9.9
Any muscle disorder	12.8	13.9
New-onset diabetes	6.4	6.9
Elevated hepatic enzymes	4.5	2.6
Prespecified renal events	10.3	8.1
Gout	2.6	2.0
Cholelithiasis	2.5	2.0

Nissen SE. et al. JAMA. July 11, 2023; 330(2): 131-140.

Inclisiran



Nurmohamed, et al. JACC. 77:1564-75, 2021

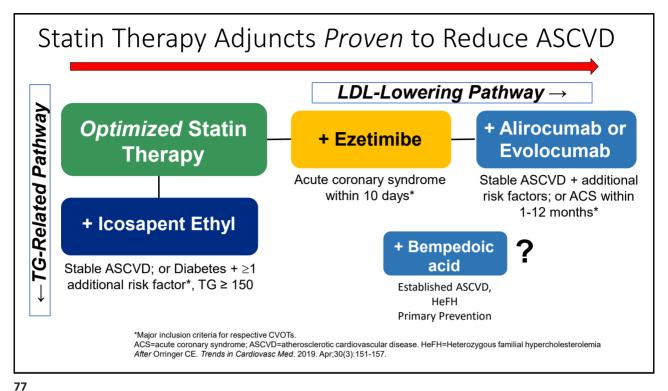
73

Inclisiran (Leqvio)

- · Mechanism of Action:
 - Synthetic, small interfering RNA (siRNA) that inhibits translation of PCSK9. Binds to mRNA precursor of PCSK9 which undergoes degradation not allowing PCSK9 to be formed.
 - Leads to upregulation of LDL-receptors and increased clearance of LDL-C
- Lowers LDL-C by ~50-55%
- Indicated on July 2021 as an adjunctive therapy in patients with hypercholesterolemia and ASCVD or HeFH
- Recently updated 7/10/23 for primary prevention as adjunct to diet and statin Rx for patient's w/o CV events but at increased risk of heart disease.
- Updated on 7/31/25 as a first-line monotherapy to reduce LDL-C in adults with hypercholesterolemia in addition to diet and exercise (w/o statin therapy).
- Side Effects: injection site reaction, arthralgia, UTI, diarrhea, bronchitis, extremity pain, dyspnea.
- Dosing: 284 mg SC injection administered by a HCP at an initial dose, at 3 months, and then twice a year dosing.
- Pharmacodynamics: no dose adjustment for renal/hepatic impairment.

Ray et al. NEJM 2020

75


Where Does Inclisiran Fit In?

450 510540

Similar indications to PCSK9 inhibitors

Days

- · Well tolerated
- Every 6-month dosing, after initial 2 doses separated by 3 months, but by HCP ("buy and bill")
- Awaiting ORION-4 Outcome data in late 2026/2027
- · Consider:
 - instead of PCSK9i?
 - for patient's intolerant to PCSK9i?
 - For Medicare patients (under Medicare B)?

,,

Take Home Points

- For LDL-C, Lower for longer is better for CV Outcomes.
- Management of patients unable or unwilling to take statins is challenging and regardless of a nocebo effect, high-risk patients need alternative Rxs.
- Very High Risk ASCVD patients require aggressive LDL-C lowering to < 55 mg/dL and often require multiple classes of lipid-lowering Rx.
- PCSK9 monoclonal antibodies when added to statins and ezetimibe reduce ASCVD events and may reduce mortality in very high-risk patients.
- Bempedoic acid reduces LDL-C and may provide an oral alternative to statins in statin-intolerant patients for primary and secondary prevention.
- The data supports the incremental benefit of LDL-C lowering with ezetimibe, bempedoic acid, and PCSK9 inhibition in high and very highrisk patients, including those with statin intolerance.
- New Lipid Guidelines should be coming out in 2026.

And What About Lp(a)

79

Objectives

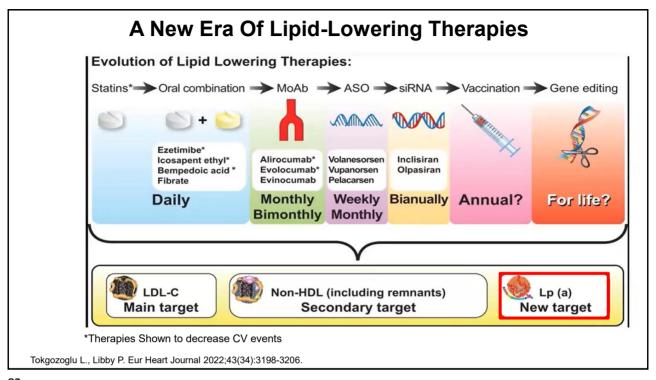
- Review the most recent cholesterol updated guideline on LDL-C thresholds for treatment including the newer 2022 LDL-C target for the very-high risk patient.
- Review currently available "newer" non-statin cholesterollowering therapies and their roles for LDL-C Reduction.
- 3) Learn When and Why You Should Measure Lp(a) understanding its relationship to CV Disease.
- 4) Review what you can currently do for Lp(a) elevation and the Clinical Trials Currently in Progress.

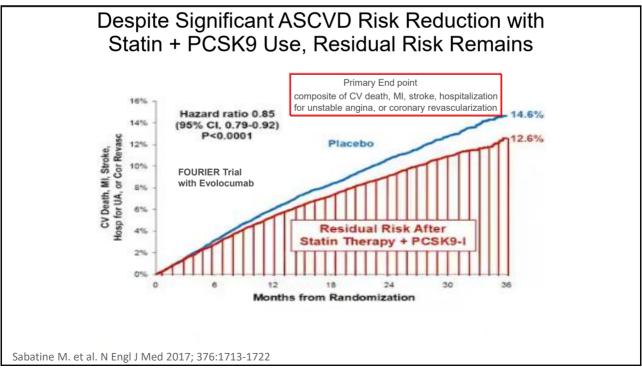
ARS Question 2

- A 41-year-old male is very concerned of his own personal risk as his father died of a heart attack at age 47 and his father's brother, his uncle, had a stroke at age 36.
- He exercises 5 days a week and gets in 7500 steps a day, maintains a vegan diet, and has no significant medical issues.
- He has a BMI of 26, a BP of 126/72, an A1C of 4.8, and normal renal function and u/a.
- Recent labs: Total Chol 140, HDL 45, TG 130, Calculated LDL-69, non-HDL-C 95.
- He is on no medications.

CONTINUING EDUCATION COMPANY

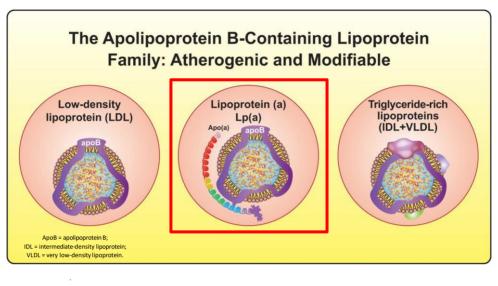
81


ARS Question 2


What Would You Recommend?

- Α. Reassurance and no further testing
- B. Draw Genetic testing for Familial
- Hypercholesterolemia C.
- Draw hs-CRP D
- E. Order a Coronary Calcium Score
- F. Check Lp(a)

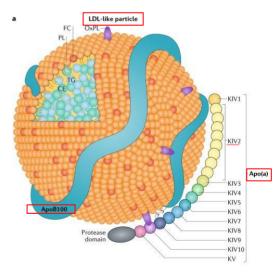
CONTINUING EDUCATION COMPANY



The Multiple Facets of Residual Risk							
Despite available treatments, residual risk for CV events persists in people with or at high risk for ASCVD							
Type of residual risk	Inflammatory	Cholesterol	Thrombotic	Triglyceride	Lp(a)	Diabetes	
Biomarker	hsCRP ≥ 2 mg/L	LDL-C ≥ 100 mg/dL	No simple biomarker	TG ≥ 150 mg/dL	Lp(a) ≥ 125 nmol/L	A1C Fasting glucose	
Intervention	Targeted inflammation reduction	Targeted LDL-C/Apo B reduction	Targeted antithrombotic reduction	Targeted triglyceride reduction	Targeted Lp(a) reduction	SGLT2 inhibitors GLP-1 RAs	
Trial evidence	CANTOS COLCOT LoDoCo2	IMPROVE-IT FOURIER SPIRE ODYSSEY	PEGASUS COMPASS THEMIS	REDUCE-IT	Ongoing	EMPA-REG CANVAS DECLARE CREDENCE	
A1C = glycated hemoglobin; Apo B = apolipoprotein B; ASCVD = atherosclerotic cardiovascular disease; CV = cardiovascular; GLP-1 RA = glucagon-like peptide-1 receptor agonist; hsCRP = high-sensitivity C-reactive protein; LDL-C = low-density lipoprotein cholesterol; Lp(a) = lipoprotein a; SGLT2 = sodium glucose cotransporter 2; TG = triglyceride. Adapted from Lawler PR et al. Eur Heart J. 2021;42(1):113-131.						LEADER SUSTAIN-6 REWIND	

What Is Lp(a)

Atherogenic ApoB-containing Lipoproteins

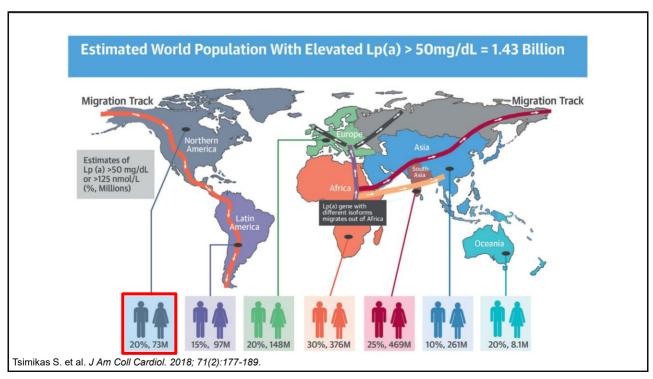


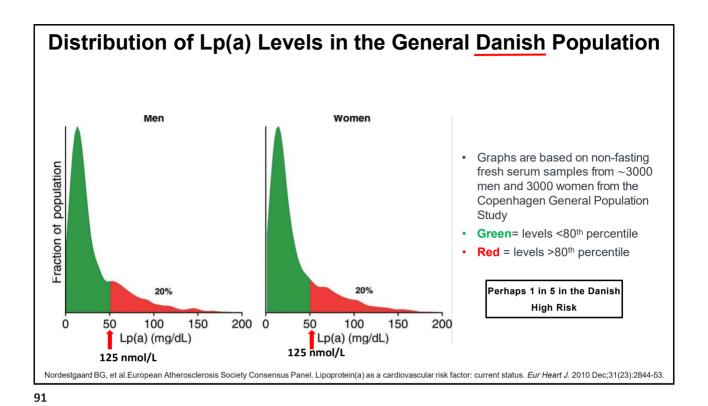
Tokgözoğlu L et al. Eur Heart J. 2022;43(34):3198-3208

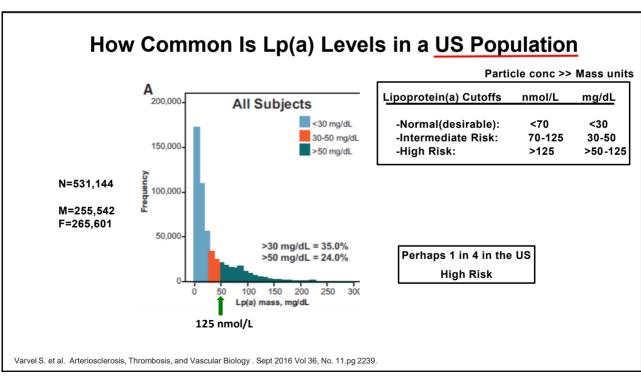
87

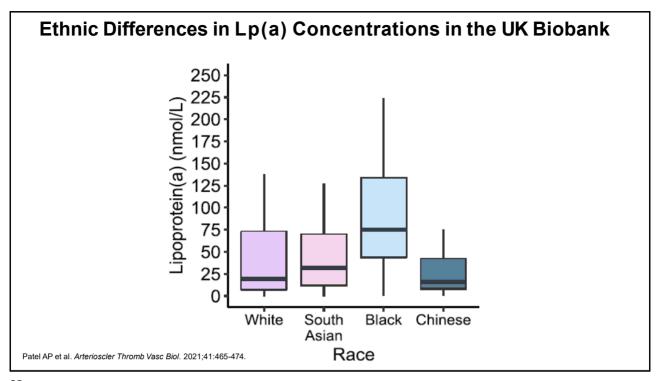
Lipoprotein(a) Structure

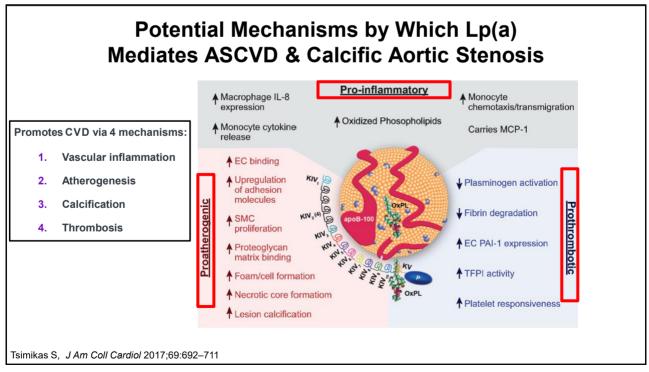
- Lp(a) is an LDL-like particle with apoprotein
 (a) on its surface covalently bound to apo B100
- Major lipoprotein carrier of pro-inflammatory and pro-calcific oxidized phospholipids (OxPL)
- Apo(a) is highly homologous to plasminogen interfering with the fibrinolytic system which normally breaks down clots
- The apo(a) part consists of 10 subtypes of kringle domain IV (KIV1-10), a kringle domain V (KV) and an inactive protease domain. KIV-2 repeats is inversely correlated with CV risk.

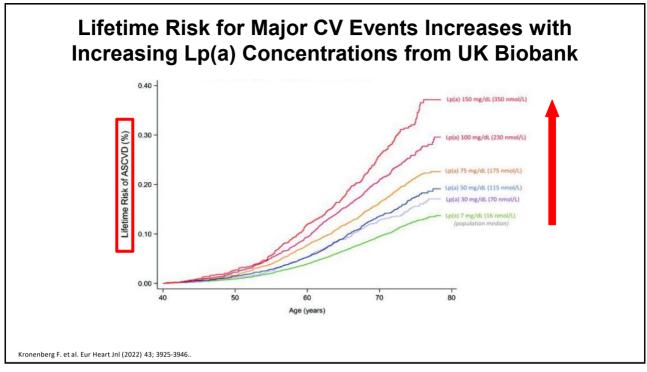


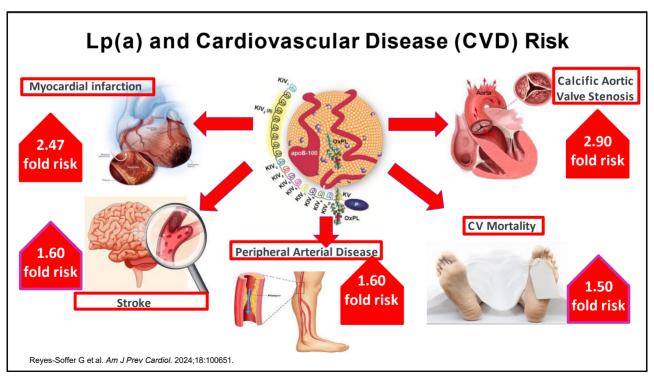

Lipoprotein A – Lp(a)

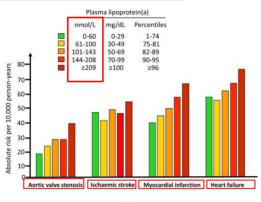

- 80-90% of Lp(a) is genetically determined and fully expressed by age 5 and then remains stable over one's lifetime
- Elevated Lp(a) occurs in 1 in 5 people globally (about 20%)¹
- Elevated Lp(a) is currently the strongest single inherited risk factor for early CAD and aortic stenosis¹
- Elevations in Lp(a) result in 2 to 4 times higher risk of CV events¹
- High Lp(a) occurs in all ethnic groups
 - More common among African Americans and South Asians²
- Major landmark RCTs have shown that elevated Lp(a) is associated with less benefit from statin therapy and elevated Lp(a) is associated with higher residual CV risk

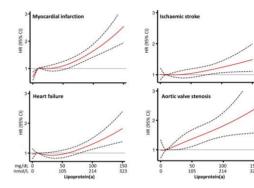

1. Wilson DP, et al. J Clin Lipidol 2019;13(3):374-392,


Grundy SM et al. J Am Coll Cardiol 2019;73(24):3234-3237





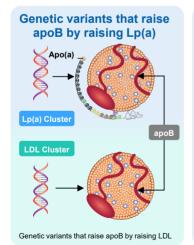




Risk of Clinical Outcomes by Lp(a) Concentration

- Increasing levels of Lp(a) concentration and absolute/relative risk:
 - Aortic valve stenosis
 - Ischemic stroke
 - · Myocardial infarction
 - Heart failure

 MACE higher at Lp(a) >50 mg/dL, even when LDL-C levels were <70mg/dL.



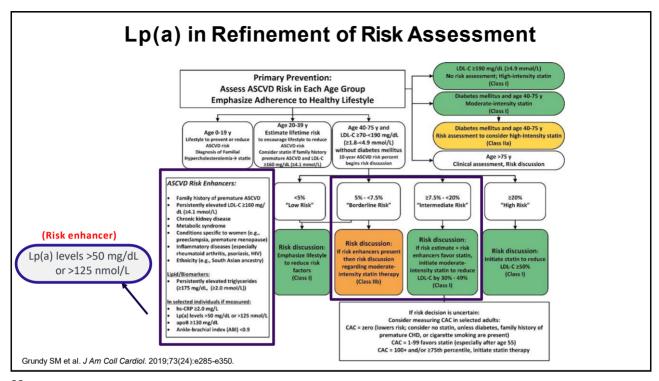
Kronenberg F, et al. Eur Heart J. 2022 Oct 14;43(39):3925-3946.

97

Lp(a) Is Approximately 6-fold More Atherogenic* Than LDL on a Per-particle Basis

Mendelian Randomisation

ApoB in Lp(a) vs CHD risk


ApoB in LDL vs CHD risk

*apoB attached to either an LDL or Lp(a) particle

- Both Lp(a) and LDL contain one apoB molecule per particle
- A study of UK Biobank data[†] identified genetic cluster variants (SNPs) associated with LDL or Lp(a) particles in plasma to determine their relationship with CHD risk
- Per 50 nmol/L increase in apoB in Lp(a) the OR of increased CHD risk was 1.28 (95% Cl:1.24–1.33)
- Per 50 nmol/L increase in apoB in LDL, the OR was 1.04 (95% CI:1.03–1.05)

*Atherogenicity was defined as the difference in CHD risk per unit difference in Lp(a) or LDL particle number (molar concentration); †This study was principally based on the UK Biobank population (>502,000 UK residents of mainly European ancestry); a replication cohort, the CARDioGRAMplusC4D (Coronary ARtery Disease Genome wide Replication and Meta-analysis [CARDioGRAM] plus The Coronary Artery Disease Genetics] data set tested the generalizability of these findings.

Björnson E, et al. J Am Coll Cardiol. 2024;83:385-395

Guideline and Consensus Recommendations for Lp(a) Measurement

In Whom Should Lp(a) Be Measured?

2024 NLA Scientific Statement	2022 EAS Lp(a) Consensus	2021 Canadian CV Society Dyslipidemia Guidelines	2018 AHA/ACC Cholesterol Guidelines	2019 ESC/EAS Dyslipidemia Guidelines
All adults High-risk children Cascade testing	All adults In youth with hx ischemic stroke or family hx premature ASCVD or high Lp(a) and no other risk factors Cascade testing	• <u>All individu</u> als, with initial screening	If decision is made to measure Lp(a), an Lp(a) ≥50 mg/dL or ≥125 nmol/L may be considered a risk- enhancing factor	• All adults

In the absence of therapies substantially altering lipoprotein(a), a single accurate measurement of lipoprotein(a) molar concentration is an efficient method to inform CAD risk.

Adapted from Kronenberg F et al. *Curr Opin Lipidol*. 2022;33(6):342-352. Kronenberg F et al. *Eur Heart J*. 2022;43(39):3925-3946. Pearson GJ et al. *Can J Cardiol*. 2021; 37:1129-1150.

Grundy SM et al. *J Am Coll Cardiol*. 2019;73(24):e285-e350.

Mach F et al. Eur Heart J. 2020;41(1):111-188.

Impact of LDL-C Lowering Therapies on Lp(a)

There are currently no approved pharmacologic therapies for lowering Lp(a).

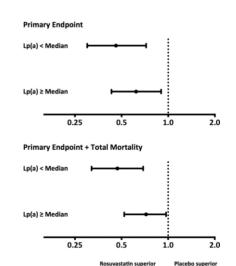
No/minimal impact

- Diet¹ (saturated fat may lower slightly)2
- Bempedoic acid³
- Ezetimibe³
 - Possible reduction, 0-5%

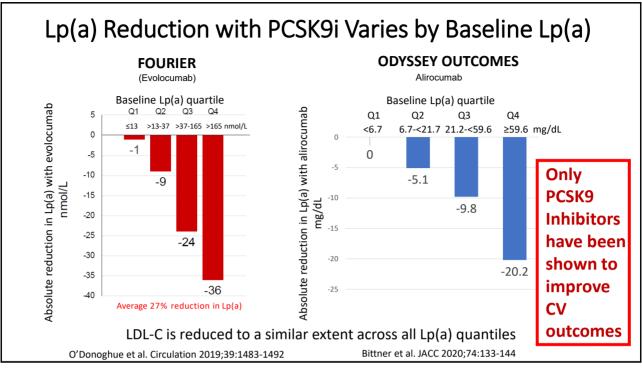
Reduction

- Niacin³
 - ~20% (no benefit RCT + statin)
- PCSK9 inhibitors (mAb/siRNA)³
 - 20–25% (benefit RCT + statin)
- Lipoprotein apheresis³
- 70-80% (benefit in observational data)
- Lomitapide⁴ (HoFH only)
 - ~13% (no outcomes data)

Possible increase


- Statins³
 - Possible increase, 0-10% but still felt indicated for LDL-C excess

- 1. Enkhmaa B et al. Nutrients. 2020;12(7):2024;
- Ginsberg HN et al. Arterioscler Thromb Vasc Biol. 1998;18(3):441-449;
 Schwartz GG, Ballantyne CM. Atherosclerosis. 2022;349:110-122;
- 4. Rader DJ, Kastelein JJP. Circulation 2014;129(9):1022-1032


101

Statins in the Jupiter Trial and LP(a)

- Increase Lp(a) levels
- Significantly reduced incident of cardiovascular disease in participants with elevated Lp(a)

Khera AV, et al.Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial Circulation. 2014 Feb 11;129(6):635-42.

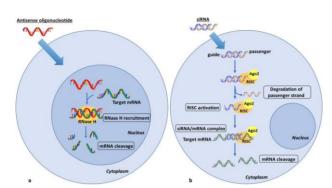
Lipoprotein Apheresis

Only FDA Approved Therapy for Secondary Prevention in Those with High Lp(a)

- Reduces Lp(a) levels by 50-80% with each treatment
- Reduce risk 75-95% based on studies in Germany
- Targeted and available
- Done Weekly to biweekly

FDA-approved Indications for Lipoprotein Apheresis (Updated as of January 2025)

Patient Group	Criteria for Treatment
Group A	Functional hypercholesterolemic homozygotes (HoFH) with LDL-C >500 mg/dL
Group B	Functional hypercholesterolemic heterozygotes (HeFH) with LDL-C ≥300 mg/dL
Group C	Functional hypercholesterolemic heterozygotes (HeFH) with LDL-C ≥70 mg/dL and either documented coronary artery disease or peripheral artery disease
Group D	Lp(a) >60 mg/dL (>130 nmol/L) with either documented coronary artery disease or documented peripheral artery disease


www.aspconline.org/news/httpsliposorbercompostsexpanded-indication-for-kanekas-liposorber-la-15-system

105

Clinical Trials in Progress

Nucleic Acid Therapies for Lp(a)

ASO Pelacarsen

siRNA

- Olpasiran
- Lepodisiran
- Zerlasiran
- Small molecule inhibitor

Muvalaplin

ASO-Anti-Sense Oligonucleotide SiRNA-Small Interfering RNA

107

Drugs in Development Targeting Lp(a)

Drug	Company	Mechanism	Drug administration	Trial	CV Outcomes Completed
Pelacarsen	Novartis	ASO	Subcutaneous injection Q4weeks	HORIZON: Phase 3	May 2025 Early 2026
Olpasiran	Amgen	siRNA	Subcutaneous injection Q12 weeks	OCEAN (a): Phase 3	December 2026
Lepodisiran	Eli Lilly	siRNA	Subcutaneous injection Q6 months?	ALPACA: Phase 2 ACCLAIM-Lp(a): Phase 3	March 2029
Zerlasiran (SLN360)	Silence Therapeutics	siRNA	Subcutaneous injection	APOLLO: Phase 2	No phase 3 as of yet
Muvalaplin	Eli Lilly	Oral small molecule	Oral medication once daily	MOVE-Lp(a): Phase 3	March 2031

NLA Treatments Recommendations for Elevated Lp(a)

- · Diet and lifestyle changes
- Control all other CV risk factors
- Maximize LDL-C lowering with statins
 - Although statins may slightly increase Lp(a), the overall benefits on ASCVD risk reduction suggest that this therapy should remain the standard of care.
- In high-risk or very-high-risk patients taking a maximally tolerated statin, adding ezetimibe is reasonable in those
 with on-treatment LDL-C ≥70 mg/dL (or non-HDL-C ≥100 mg/dL)
- PCSK9-directed therapies: for whom?
 - Linked to 20%-30% decrease in Lp(a) levels and an associated reduction in MACE
 - May be a good choice in high-risk patients who also have not reached LDL-C goals on maximally tolerated statin therapy

Lp(a) apheresis – only FDA-approved treatment for high Lp(a) in secondary prevention

- Aspirin for risk lowering?
 - Risk-benefit discussion may be warranted for primary prevention of ASCVD
- · Refer to a lipid specialist and/or a clinical trial.
- Secondary prevention patients: waiting results of HORIZON, OCEAN(a), ACCLAIM, MOVE-Lp(a).
- · High risk primary prevention: waiting results of the ACCLAIM trial

Koschinsky ML et al. J Clin Lipidol. 2024;18(3):e308-e319.

109

CONCLUSIONS

- Now Know When and Why You Should Measure Lp(a) understanding its relationship to CV Disease.
- Now Know what you can currently do for Lp(a) elevation and anxiously await the Clinical Trials Currently in Progress.